Pregunta
upstudy study bank question image url

b) \( x^{2}+2 x-48=C \)

Ask by Craig Ball. in Mexico
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Las soluciones de la ecuación son \( x = 6 \) y \( x = -8 \).

Solución

Claro, resolvamos la ecuación cuadrática: \[ x^{2} + 2x - 48 = 0 \] Para resolver esta ecuación, utilizaremos la **fórmula cuadrática**, que es: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] Donde: - \( a = 1 \) - \( b = 2 \) - \( c = -48 \) Sustituyendo estos valores en la fórmula: \[ x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-48)}}{2 \cdot 1} \] \[ x = \frac{-2 \pm \sqrt{4 + 192}}{2} \] \[ x = \frac{-2 \pm \sqrt{196}}{2} \] \[ x = \frac{-2 \pm 14}{2} \] Esto nos da dos soluciones posibles: 1. **Primera solución:** \[ x = \frac{-2 + 14}{2} \] \[ x = \frac{12}{2} \] \[ x = 6 \] 2. **Segunda solución:** \[ x = \frac{-2 - 14}{2} \] \[ x = \frac{-16}{2} \] \[ x = -8 \] **Por lo tanto, las soluciones de la ecuación son:** \[ x = 6 \quad \text{y} \quad x = -8 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that the equation \( x^{2}+2 x-48=0 \) can be solved using the quadratic formula? The formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) is your best friend here, where \( a=1 \), \( b=2 \), and \( c=-48 \). This will give you the roots of the quadratic, showing you where it intersects the x-axis! Now, about common pitfalls: When applying the quadratic formula, some might forget to calculate the discriminant \( b^2 - 4ac \) correctly. A positive discriminant means two distinct real roots, zero means one real root, and a negative discriminant indicates no real solutions at all. Double-check your math to avoid those blunders!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad