Pregunta
upstudy study bank question image url

e the imaginary number i to rewrite the expression below as a complex number. Simp radicals. \( -\sqrt{-66} \)

Ask by Tucker Frank. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\(-\sqrt{-66}\) can be written as \(-i\sqrt{66}\).

Solución

To express the expression \(-\sqrt{-66}\) as a complex number using the imaginary unit \(i\) (where \(i = \sqrt{-1}\)), follow these steps: 1. **Understand the Imaginary Unit (\(i\)):** The imaginary unit \(i\) is defined as: \[ i = \sqrt{-1} \] This allows us to handle square roots of negative numbers by expressing them in terms of \(i\). 2. **Rewrite \(-\sqrt{-66}\) Using \(i\):** Start with the original expression: \[ -\sqrt{-66} \] Break down the square root of the negative number: \[ \sqrt{-66} = \sqrt{66 \times (-1)} = \sqrt{66} \times \sqrt{-1} \] Substitute \(\sqrt{-1}\) with \(i\): \[ \sqrt{-66} = \sqrt{66} \times i = i\sqrt{66} \] Now, include the negative sign from the original expression: \[ -\sqrt{-66} = -i\sqrt{66} \] 3. **Final Complex Number:** The expression \(-\sqrt{-66}\) expressed as a complex number is: \[ -i\sqrt{66} \] This is in the standard form \(a + bi\), where \(a = 0\) and \(b = -\sqrt{66}\). 4. **Summary:** \[ -\sqrt{-66} = -i\sqrt{66} \] This represents the original expression as a complex number with an imaginary component.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To rewrite \( -\sqrt{-66} \) as a complex number, you can first factor out the negative inside the radical. This gives us \( -\sqrt{-1 \cdot 66} = -\sqrt{-1} \cdot \sqrt{66} \). Since \( \sqrt{-1} \) is defined as \( i \), we have: \( -\sqrt{-66} = -i\sqrt{66} \). And there you have it, \( -i\sqrt{66} \) is your complex number! To visualize this further, in a complex plane, the horizontal axis is for real numbers, while the vertical axis represents imaginary numbers. So, \( -i\sqrt{66} \) would lie purely on the imaginary axis, indicating how far down it extends, which can be quite handy in various applications like electrical engineering and signal processing where complex numbers often represent oscillations and waves!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad