Pregunta
For the exponential function \( f(x)=3 \cdot 5^{x} \), what is the value of \( f(4) \) ? a.) 60 b.) 50625 c.) 405 d.) 1875
Ask by Ingram Vaughan. in the United States
Jan 26,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( f(4) = 1875 \)
Solución
To find the value of \( f(4) \) for the function \( f(x) = 3 \cdot 5^{x} \), follow these steps:
1. **Substitute \( x = 4 \) into the function:**
\[
f(4) = 3 \cdot 5^{4}
\]
2. **Calculate \( 5^4 \):**
\[
5^4 = 5 \times 5 \times 5 \times 5 = 625
\]
3. **Multiply by 3:**
\[
f(4) = 3 \times 625 = 1875
\]
**Answer:**
d.) 1875
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To find the value of \( f(4) \) for the function \( f(x)=3 \cdot 5^{x} \), you would substitute \( x \) with \( 4 \): \[ f(4) = 3 \cdot 5^{4} \] First, calculate \( 5^{4} \): \[ 5^{4} = 625 \] Now multiply that by 3: \[ f(4) = 3 \cdot 625 = 1875 \] So the correct answer is \( d.) 1875 \). Hooray for exponents! They can take you on quite a ride to achieving those sky-high values! Plus, remember to use parentheses—just like a good hug—they hold everything together and keep your math safe and sound!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium