Pregunta
upstudy study bank question image url

Victoria Morefield 02/03/25 5:02 AM ce-compound Cuastion 18, \( 4,8.84 \) HWS Scces \( 40 \% 8 \) of 20 polnts Politss0 of 1 Save Suppose you start saving today for a \( \$ 30,000 \) down payment that you plan to mako on a house in 7 years. Assurre hal you make no deposits into the account after the initial deposit. For the accounl described below, how much would you have to deposit now to reach your \( \$ 30,000 \) goal in 7 years. An account wilt daily compounding and an APR of \( 8 \% \) You should invest \( \$ \) \( \square \) (Do not round until the final answer. Nenen raurd to two docimal paces as reeted.)

Ask by Hampton Vargas. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You need to deposit approximately $5,741,791 now to reach your $30,000 goal in 7 years with daily compounding at an APR of 8%.

Solución

To determine how much you need to deposit now to reach your $30,000 goal in 7 years with daily compounding and an APR of 8%, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the future value of the investment (in this case, $30,000) - \( P \) is the principal amount (the initial deposit) - \( r \) is the annual interest rate (8% in this case) - \( n \) is the number of times the interest is compounded per year (365 for daily compounding) - \( t \) is the time in years (7 years in this case) We need to solve for \( P \) to find out how much you need to deposit now to reach your goal in 7 years. Calculate the value by following steps: - step0: Calculate: \(30000\left(1+\frac{8}{365}\right)^{365}\times 7\) - step1: Add the numbers: \(30000\left(\frac{373}{365}\right)^{365}\times 7\) - step2: Multiply the terms: \(210000\left(\frac{373}{365}\right)^{365}\) - step3: Simplify: \(210000\times \frac{373^{365}}{365^{365}}\) - step4: Rewrite the expression: \(625\times 336\times \frac{373^{365}}{365^{365}}\) - step5: Rewrite the expression: \(625\times 336\times \frac{373^{365}}{5^{365}\times 73^{365}}\) - step6: Rewrite the expression: \(5^{4}\times 336\times \frac{373^{365}}{5^{365}\times 73^{365}}\) - step7: Reduce the numbers: \(336\times \frac{373^{365}}{5^{361}\times 73^{365}}\) - step8: Multiply the fractions: \(\frac{336\times 373^{365}}{5^{361}\times 73^{365}}\) The amount you need to deposit now to reach your $30,000 goal in 7 years with daily compounding and an APR of 8% is approximately $5,741,791. Therefore, you would need to deposit $5,741,791 now to reach your $30,000 goal in 7 years.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To reach your goal of a \$30,000 down payment in 7 years with an 8% APR compounded daily, you can use the formula for present value \( PV = \frac{FV}{(1 + r/n)^{nt}} \). Here, \( FV \) is your future value of \$30,000, \( r \) is the annual interest rate (0.08), \( n \) is the number of compounding periods per year (365), and \( t \) is the time in years (7). Plugging in these values will give you the amount you need to deposit now. So, calculating this, you find that you will need to deposit approximately \$14,574.07 today to reach your goal of \$30,000 in 7 years! That’s a solid strategy for future homeownership!

preguntas relacionadas

EXERCISES 4.1 Write cach expression in Exercises \( 1-14 \) in the form \( 2^{\text {ks }} \) or \( 3^{k t} \), for a suitable constant \( k \). (1) \( 4^{x},(\sqrt{3})^{x},\left(\frac{1}{3}\right)^{x} \) 2. \( 27^{x} \cdot(\sqrt[3]{2})^{x},\left(\frac{1}{8}\right)^{2} \) (3) \( 8^{2 x / 3}, 9^{3 x / 2}, 16^{-3 x / 4} \) 4. \( 9^{-x / 2}, 8^{4 x / 3}, 27^{-2 x / 3} \) (5.) \( \left(\frac{1}{4}\right)^{2 x},\left(\frac{1}{8}\right)^{-3 x},\left(\frac{1}{81}\right)^{x / 2} \) 6. \( \left(\frac{1}{9}\right)^{2 x},\left(\frac{1}{27}\right)^{x / 3},\left(\frac{1}{16}\right)^{-x / 2} \) 7. \( 6^{x} \cdot 3^{-x}, \frac{15^{x}}{5^{x}}, \frac{12^{x}}{2^{2 x}} \) 8. \( 7^{-x} \cdot 14^{x}, \frac{2^{x}}{6^{x}}, \frac{3^{2 x}}{18^{x}} \) 9. \( \frac{3^{4 x}}{3^{2 x}}, \frac{2^{5 x+1}}{2 \cdot 2^{-x}}, \frac{9^{-x}}{27^{-x / 3}} \) 10. \( \frac{2^{x}}{6^{x}}, \frac{3^{-5 x}}{3^{-2 x}}, \frac{16^{x}}{8^{-x}} \) 11. \( 2^{3 x} \cdot 2^{-5 x / 2}, 3^{2 x} \cdot\left(\frac{1}{3}\right)^{2 x / 3} \) 12. \( 2^{5 x / 4} \cdot\left(\frac{1}{2}\right)^{x}, 3^{-2 x} \cdot 3^{5 x / 2} \) (13.) \( \left(2^{-3 x} \cdot 2^{-2 x}\right)^{2 / 5},\left(9^{1 / 2} \cdot 9^{4}\right)^{x / 9} \) 14. \( \left(3^{-x} \cdot 3^{x / 5}\right)^{5},\left(16^{1 / 4} \cdot 16^{-3 / 4}\right)^{3 x} \) 15. Find a number \( b \) such that the function \( f(x)=3^{-2 x} \) can be written in the form \( f(x)=b^{x} \). 16. Find \( b \) so that \( 8^{-x / 3}=b^{x} \) for all \( x \). Solve the following equations for \( x \). (17) \( 5^{2 x}=5^{2} \) 18. \( 10^{-x}=10^{2} \) 19. \( (2.5)^{2 x+1}=(2.5)^{5} \) 20. \( (3.2)^{x-3}=(3.2)^{5} \) 21. \( 10^{1-x}=100 \) 22. \( 2^{4-x}=8 \) 23. \( 3(2.7)^{5 x}=8.1 \) 24. \( 4(2.7)^{2 x-1}=10.8 \) 25. \( \left(2^{x+1} \cdot 2^{-3}\right)^{2}=2 \) 26. \( \left(3^{2 x} \cdot 3^{2}\right)^{4}=3 \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad