Pregunta
upstudy study bank question image url

What is the HCF of 135 and \( 180 ? \)

Ask by Reese Campos. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The HCF of 135 and 180 is 45.

Solución

To find the Highest Common Factor (HCF), also known as the Greatest Common Divisor (GCD), of **135** and **180**, we can use two primary methods: **Prime Factorization** and the **Euclidean Algorithm**. Here's how each method works: --- ### **Method 1: Prime Factorization** 1. **Prime Factorize Each Number** - **135**: - Divide by 5: \( 135 \div 5 = 27 \) - Divide by 3: \( 27 \div 3 = 9 \) - Divide by 3: \( 9 \div 3 = 3 \) - Divide by 3: \( 3 \div 3 = 1 \) - **Prime Factors**: \( 135 = 3^3 \times 5 \) - **180**: - Divide by 5: \( 180 \div 5 = 36 \) - Divide by 2: \( 36 \div 2 = 18 \) - Divide by 2: \( 18 \div 2 = 9 \) - Divide by 3: \( 9 \div 3 = 3 \) - Divide by 3: \( 3 \div 3 = 1 \) - **Prime Factors**: \( 180 = 2^2 \times 3^2 \times 5 \) 2. **Identify Common Prime Factors** - Common primes between 135 and 180: **3** and **5**. 3. **Choose the Lowest Powers of Common Primes** - For **3**: The lower exponent is \( 3^2 \) (from 180). - For **5**: The exponent is \( 5^1 \). 4. **Calculate the HCF** \[ \text{HCF} = 3^2 \times 5 = 9 \times 5 = 45 \] --- ### **Method 2: Euclidean Algorithm** The Euclidean Algorithm is a method based on division to find the HCF. 1. **Apply the Algorithm** - **Step 1**: Divide the larger number by the smaller number and find the remainder. \[ 180 \div 135 = 1 \quad \text{with a remainder of} \quad 45 \] - **Step 2**: Replace the larger number with the smaller number and the smaller number with the remainder. \[ \text{Now find HCF}(135, 45) \] - **Step 3**: Repeat the process. \[ 135 \div 45 = 3 \quad \text{with a remainder of} \quad 0 \] - **Conclusion**: When the remainder is 0, the divisor at this step is the HCF. 2. **HCF is 45** --- ### **Final Answer** The **HCF of 135 and 180 is 45**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the HCF (Highest Common Factor) of 135 and 180, we can use the prime factorization method. 135 can be factorized into primes as: \( 3 \times 3 \times 3 \times 5 \) (or \( 3^3 \times 5 \)). 180 can be factorized into primes as: \( 2 \times 2 \times 3 \times 3 \times 5 \) (or \( 2^2 \times 3^2 \times 5 \)). Now, we take the lowest powers of the common prime factors: - For the prime factor 3, the minimum power is \( 3^2 \). - For the prime factor 5, the minimum power is \( 5^1 \). Thus, the HCF is \( 3^2 \times 5^1 = 9 \times 5 = 45 \). So, the HCF of 135 and 180 is 45! 🚀 Another nifty way to tackle finding the HCF is by using the Euclidean algorithm. You start with the bigger number, say 180, and divide it by the smaller number, 135. The remainder becomes your new number. Keep doing this until the remainder is zero. The divisor at that step is your HCF! This method is quick and can save you from a lot of prime factorization headaches! 📏

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad