1. Calculate the length of \( C D \) if \( C(-9 ; 1) \) and \( D(-3 ; 5) \). 2f the length of \( A B \) is 5 , calculate the missing coordinate if \( A(6 ;-2) \) and \( B(x ; 2) \). 3. Calculate the midpoint of line segment \( E F \) if \( E(-4 ; 7) \) and \( F(2 ; 5) \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the length of \( CD \), use the distance formula \( d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \). Plugging in the coordinates for \( C(-9, 1) \) and \( D(-3, 5) \), we get: \[ d = \sqrt{((-3) - (-9))^2 + (5 - 1)^2} = \sqrt{(6)^2 + (4)^2} = \sqrt{36 + 16} = \sqrt{52} = 2\sqrt{13} \] Now, to find the missing coordinate \( x \) such that the distance \( AB = 5 \): Using the distance formula again, we simplify: \[ 5 = \sqrt{(x - 6)^2 + (2 + 2)^2} \] Squaring both sides gives: \[ 25 = (x - 6)^2 + 16 \] \[ 9 = (x - 6)^2 \] So, \( x - 6 = 3 \) or \( x - 6 = -3 \), resulting in \( x = 9 \) or \( x = 3 \). To calculate the midpoint \( M \) of line segment \( EF \): The midpoint formula is \( M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \). Substituting for \( E(-4, 7) \) and \( F(2, 5) \), we have: \[ M = \left( \frac{-4 + 2}{2}, \frac{7 + 5}{2} \right) = \left( \frac{-2}{2}, \frac{12}{2} \right) = (-1, 6) \].