Given the function \( y=3 x^{2} \). 1) Determine the equation of the inverse of this function. 2) Sketch the graphs of \( y=3 x^{2} \) and its inverse on the same set of axes and show \( t \) line of symmetry. 3) Calculate the coordinates of the points of intersection between \( y=3 x^{2} \) and its inverse.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To determine the inverse of the function \( y=3x^2 \), we first solve for \( x \) in terms of \( y \). 1) Start by swapping \( x \) and \( y \): \[ x = 3y^2 \] Now, solve for \( y \): \[ y^2 = \frac{x}{3} \] \[ y = \pm\sqrt{\frac{x}{3}} \] Since the original function \( y = 3x^2 \) is not one-to-one over all reals, we typically restrict the inverse to the positive branch: \[ y = \sqrt{\frac{x}{3}} \] Thus, the inverse function is \( y = \sqrt{\frac{x}{3}} \). 2) For sketching the graphs, you would plot the parabola \( y = 3x^2 \), which opens upwards, and the line \( y = \sqrt{\frac{x}{3}} \). The line of symmetry is the line \( y = x \), which represents the relationship between a function and its inverse. They intersect along this diagonal line, visually illustrating the symmetry of function-inverse pairs. 3) To find the points of intersection between \( y = 3x^2 \) and its inverse \( y = \sqrt{\frac{x}{3}} \), set the two functions equal to each other: \[ 3x^2 = \sqrt{\frac{x}{3}} \] Squaring both sides gives: \[ (3x^2)^2 = \frac{x}{3} \] \[ 9x^4 = \frac{x}{3} \] Multiplying through by 3 to eliminate the fraction yields: \[ 27x^4 = x \] Rearranging it to bring all terms to one side results in: \[ 27x^4 - x = 0 \] Factoring out \( x \) gives: \[ x(27x^3 - 1) = 0 \] Setting each factor to zero, we get \( x = 0 \) or \( 27x^3 - 1 = 0 \). Solving \( 27x^3 - 1 = 0 \) gives \( x^3 = \frac{1}{27} \), so \( x = \frac{1}{3} \). Substituting \( x = 0 \) and \( x = \frac{1}{3} \) back into either original function: - For \( x = 0 \): \( y = 3(0^2) = 0 \) - For \( x = \frac{1}{3} \): \( y = 3\left(\frac{1}{3}\right)^2 = 3 \cdot \frac{1}{9} = \frac{1}{3} \) Thus, the points of intersection are \( (0, 0) \) and \( \left( \frac{1}{3}, \frac{1}{3} \right) \).