Pregunta
Determine the x-intercepts of the function \( g(x) = \cos(x) - 1 \).
Ask by Bush Wood. in South Africa
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The x-intercepts of the function \( g(x) = \cos(x) - 1 \) are all integer multiples of \( 2\pi \).
Solución
To find the **x-intercepts** of the function \( g(x) = \cos(x) - 1 \), we need to determine the values of \( x \) for which \( g(x) = 0 \).
### Step-by-Step Solution:
1. **Set the function equal to zero:**
\[
\cos(x) - 1 = 0
\]
2. **Solve for \( \cos(x) \):**
\[
\cos(x) = 1
\]
3. **Determine the values of \( x \) where \( \cos(x) = 1 \):**
The cosine function equals 1 at all angles that are integer multiples of \( 2\pi \). This is because the cosine function has a period of \( 2\pi \), and it reaches its maximum value of 1 at these points.
Therefore:
\[
x = 2\pi k \quad \text{where } k \text{ is any integer}
\]
### Conclusion:
All **x-intercepts** of the function \( g(x) = \cos(x) - 1 \) occur at angles that are integer multiples of \( 2\pi \).
**Mathematically, the x-intercepts are:**
\[
x = 2\pi k \quad \text{for all integers } k
\]
### Example:
- \( k = 0 \): \( x = 0 \)
- \( k = 1 \): \( x = 2\pi \)
- \( k = -1 \): \( x = -2\pi \)
- \( k = 2 \): \( x = 4\pi \)
- And so on.
These are the points where the graph of \( g(x) \) intersects the x-axis.
**Graphical Illustration:**
![Graph of g(x) = cos(x) - 1 showing x-intercepts at multiples of 2π](https://i.imgur.com/YourImageLink.png)
*(Replace the image link with an actual graph if needed.)*
**Final Answer:**
All real numbers equal to an even multiple of π. In other words, every x with x = 2 π k for some integer k.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
The function \( g(x) = \cos(x) - 1 \) has x-intercepts where \( g(x) = 0 \). So, we set the equation to zero: \[ \cos(x) - 1 = 0 \] This simplifies to: \[ \cos(x) = 1 \] The cosine function equals 1 at integer multiples of \( 2\pi \). Therefore, the x-intercepts of the function are given by: \[ x = 2n\pi \quad \text{for } n \in \mathbb{Z} \] This means the x-intercepts occur at points like \( 0, 2\pi, -2\pi, 4\pi, -4\pi, \) and so on.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium