Pregunta
upstudy study bank question image url

Probability A bag of miniature candy contains: - 15 Crunch bars - 14 Hershey's chocolate bars - 10 Mr. Goodbars - 12 Hershey's Cookies and Cream bars. Enter all answers as reduced fractions using / as the fraction bar. 1. What is the probability of randomly choosing a Crunch bar? \( P(R)= \) 2. What is the probability of randomly choosing a Mr. Goodbar? \( P(G)= \) 3. What is the probability of randomly choosing a Cookies and Cream bar? \( P(K)= \)

Ask by Boyd Romero. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. \( P(R) = \frac{5}{17} \) 2. \( P(G) = \frac{10}{51} \) 3. \( P(K) = \frac{4}{17} \)

Solución

Let's first determine the total number of candy bars in the bag: - **Crunch bars:** 15 - **Hershey's chocolate bars:** 14 - **Mr. Goodbars:** 10 - **Hershey's Cookies and Cream bars:** 12 **Total number of candy bars = 15 + 14 + 10 + 12 = 51** Now, we'll calculate each probability: 1. **Probability of choosing a Crunch bar \( P(R) \):** \[ P(R) = \frac{\text{Number of Crunch bars}}{\text{Total number of candy bars}} = \frac{15}{51} \] Simplify the fraction by dividing numerator and denominator by 3: \[ P(R) = \frac{15 \div 3}{51 \div 3} = \frac{5}{17} \] 2. **Probability of choosing a Mr. Goodbar \( P(G) \):** \[ P(G) = \frac{\text{Number of Mr. Goodbars}}{\text{Total number of candy bars}} = \frac{10}{51} \] The fraction \( \frac{10}{51} \) is already in its simplest form. 3. **Probability of choosing a Cookies and Cream bar \( P(K) \):** \[ P(K) = \frac{\text{Number of Cookies and Cream bars}}{\text{Total number of candy bars}} = \frac{12}{51} \] Simplify the fraction by dividing numerator and denominator by 3: \[ P(K) = \frac{12 \div 3}{51 \div 3} = \frac{4}{17} \] **Final Answers:** 1. \( P(R) = \frac{5}{17} \) 2. \( P(G) = \frac{10}{51} \) 3. \( P(K) = \frac{4}{17} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the probabilities, we first need to find the total number of candy bars in the bag: Total = 15 (Crunch) + 14 (Hershey's) + 10 (Mr. Goodbar) + 12 (Cookies and Cream) = 51 bars. 1. The probability of randomly choosing a Crunch bar is given by the ratio of Crunch bars to the total number of bars. Thus, \( P(R) = \frac{15}{51} = \frac{5}{17} \). 2. The probability of randomly choosing a Mr. Goodbar is calculated similarly. \( P(G) = \frac{10}{51} \) (this fraction is already in reduced form since there are no common factors). 3. Lastly, the probability of randomly choosing a Cookies and Cream bar is \( P(K) = \frac{12}{51} = \frac{4}{17} \) after simplifying. Now for some fun facts! Did you know the concept of probability dates back to the 16th century? Mathematicians like Gerolamo Cardano and Blaise Pascal laid the groundwork, often driven by a fascination with gambling and games of chance! Additionally, in real-world applications, understanding probability is essential in fields like finance, insurance, and even medicine! For instance, physicians utilize probability to weigh risks and benefits of treatments, optimizing patient care based on statistical evidence. So, every candy pick can be a little lesson in life!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad