15 Bamey bas a biased coin. 5. Marder Probability When the coin is thrown once, It Damey throws the coin 4 limes. (a) Work out the probability that the coin will land heads exactly 3 times. \( 0.3 \times 3= \) \( 0.7 x \) (b) Work out the probability that the coin will land heads at least once. (3)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the probability of getting exactly 3 heads when flipping a biased coin with a probability of landing heads \( p = 0.3 \) and tails \( q = 0.7 \), you can use the binomial probability formula: \[ P(X = k) = \binom{n}{k} p^k q^{n-k} \] Here, \( n = 4 \) (the number of flips), \( k = 3 \) (the number of heads), so: \[ P(X = 3) = \binom{4}{3} (0.3)^3 (0.7)^{1} = 4 \cdot 0.027 \cdot 0.7 = 0.0756 \] For part (b), to find the probability of getting at least one head, you can use the complement rule. First, calculate the probability of getting no heads (zero heads): \[ P(X = 0) = \binom{4}{0} (0.3)^0 (0.7)^{4} = 1 \cdot 1 \cdot 0.2401 = 0.2401 \] Now, use this to find the probability of at least one head: \[ P(X \geq 1) = 1 - P(X = 0) = 1 - 0.2401 = 0.7599 \] So, the probability of getting exactly 3 heads is \( 0.0756 \), and the probability of getting at least one head is \( 0.7599 \).