Graph each parabola. Include the vertex and at least three precise points on each side of the line of symmetry. Then describe the transformation in words. 27. \( f(x)=x^{2} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
The graph of the function \( f(x) = x^2 \) is a standard parabola that opens upwards. Its vertex is located at the origin (0, 0). To find other points, you can evaluate the function at \( x = -3, -2, -1, 1, 2, 3 \). This gives you the points: (-3, 9), (-2, 4), (-1, 1), (1, 1), (2, 4), and (3, 9). Each of these points helps demonstrate the symmetry around the vertical line of symmetry, \( x = 0 \). In terms of transformation, \( f(x) = x^2 \) represents a basic quadratic function that has not undergone any shifts, stretches, or compressions. It is the simplest form of a parabola, showcasing a perfect U-shape that opens upwards symmetrically around the y-axis.