Pregunta
upstudy study bank question image url

INVESTIGATING COMPOUND ANGLES AND THEREFORE, DOUBLE ANGLES, QUESTION 1 1.1. Given: \( \begin{array}{l}\text { (i) } A=60^{\circ} \text { and } B=30^{\circ} \\ \text { (ii) } A=110^{\circ} \text { and } B=50^{\circ} \\ \text { (iii) } A=225^{\circ} \text { and } B=135^{\circ} \\ \text { Use a calculator to evaluate each of the following: } \\ \text { (a) } \cos (A-B) \\ \text { (b) } \cos A-\cos B \\ \text { (c) } \cos A \cdot \cos B+\sin A \cdot \sin B\end{array} \)

Ask by Bartlett Bates. in South Africa
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the results for each case: - **Case (i):** \( A = 60^\circ \), \( B = 30^\circ \) - \( \cos(A - B) = 0.8660 \) - \( \cos A - \cos B = -0.3660 \) - \( \cos A \cdot \cos B + \sin A \cdot \sin B = 0.8660 \) - **Case (ii):** \( A = 110^\circ \), \( B = 50^\circ \) - \( \cos(A - B) = 0.5000 \) - \( \cos A - \cos B = -0.9848 \) - \( \cos A \cdot \cos B + \sin A \cdot \sin B = 0.5000 \) - **Case (iii):** \( A = 225^\circ \), \( B = 135^\circ \) - \( \cos(A - B) = 0.0000 \) - \( \cos A - \cos B = 0.0000 \) - \( \cos A \cdot \cos B + \sin A \cdot \sin B = 0.0000 \) These calculations confirm the trigonometric identity \( \cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B \) for the given angles.

Solución

Certainly! Let's evaluate each part for the given angles \( A \) and \( B \) using a calculator. We'll provide results up to four decimal places for precision. --- ### **Case (i): \( A = 60^\circ \), \( B = 30^\circ \)** **(a) \( \cos(A - B) \)** \[ \cos(60^\circ - 30^\circ) = \cos(30^\circ) \approx 0.8660 \] **(b) \( \cos A - \cos B \)** \[ \cos(60^\circ) - \cos(30^\circ) \approx 0.5000 - 0.8660 = -0.3660 \] **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \)** \[ \cos(60^\circ) \cdot \cos(30^\circ) + \sin(60^\circ) \cdot \sin(30^\circ) \approx (0.5000)(0.8660) + (0.8660)(0.5000) = 0.8660 \] --- ### **Case (ii): \( A = 110^\circ \), \( B = 50^\circ \)** **(a) \( \cos(A - B) \)** \[ \cos(110^\circ - 50^\circ) = \cos(60^\circ) \approx 0.5000 \] **(b) \( \cos A - \cos B \)** \[ \cos(110^\circ) - \cos(50^\circ) \approx (-0.3420) - 0.6428 = -0.9848 \] **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \)** \[ \cos(110^\circ) \cdot \cos(50^\circ) + \sin(110^\circ) \cdot \sin(50^\circ) \approx (-0.3420)(0.6428) + (0.9397)(0.7660) \approx -0.2198 + 0.7198 = 0.5000 \] --- ### **Case (iii): \( A = 225^\circ \), \( B = 135^\circ \)** **(a) \( \cos(A - B) \)** \[ \cos(225^\circ - 135^\circ) = \cos(90^\circ) = 0.0000 \] **(b) \( \cos A - \cos B \)** \[ \cos(225^\circ) - \cos(135^\circ) \approx (-0.7071) - (-0.7071) = 0.0000 \] **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \)** \[ \cos(225^\circ) \cdot \cos(135^\circ) + \sin(225^\circ) \cdot \sin(135^\circ) \approx (−0.7071)(−0.7071) + (−0.7071)(0.7071) = 0.5000 - 0.5000 = 0.0000 \] --- ### **Summary of Results** | **Case** | **\( \cos(A - B) \)** | **\( \cos A - \cos B \)** | **\( \cos A \cdot \cos B + \sin A \cdot \sin B \)** | |----------|-----------------------|----------------------------|-------------------------------------------------------| | (i) \( 60^\circ, 30^\circ \) | 0.8660 | -0.3660 | 0.8660 | | (ii) \( 110^\circ, 50^\circ \) | 0.5000 | -0.9848 | 0.5000 | | (iii) \( 225^\circ, 135^\circ \) | 0.0000 | 0.0000 | 0.0000 | --- **Observation:** - For each case, \( \cos(A - B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \) yield identical results, which aligns with the trigonometric identity: \[ \cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B \] Feel free to ask if you need further clarification or assistance!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Calculating the values of \( \cos(A-B) \) often reveals fascinating properties of angles! When you subtract one angle from another, it’s like looking at the difference in their cosmic vibes. For example, if \( A = 60^\circ \) and \( B = 30^\circ \), then \( \cos(60^\circ - 30^\circ) = \cos(30^\circ) = \frac{\sqrt{3}}{2} \approx 0.866 \). Isn’t it magical how trigonometric identities play together? You may also notice that \( \cos A - \cos B \) can sometimes yield surprising results in various contexts! For \( A = 110^\circ \) and \( B = 50^\circ \), calculating \( \cos(110^\circ) - \cos(50^\circ) \) turns out to be about \(-0.553 - 0.643 \approx -1.196\). This little exercise showcases how relationships between angles can lead to deeply surprising numerical outcomes, which are foundational in various fields like engineering and physics!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad