Compute \( |\mathbf{u} \times \mathbf{v}| \) if \( |\mathbf{u}|=3 \) and \( |\mathbf{v}|=9 \) and the angle between \( \mathbf{u} \) and \( \mathbf{v} \) is \( \frac{5 \pi}{6} \). \( |\mathbf{u} \times \mathbf{v}|=\square \) (Simplify your answer. Type an exact answer, using radicals as needed. Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To compute the magnitude of the cross product \( |\mathbf{u} \times \mathbf{v}| \), we use the formula: \[ |\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta \] where \( \theta \) is the angle between the vectors \( \mathbf{u} \) and \( \mathbf{v} \). Given: - \( |\mathbf{u}| = 3 \) - \( |\mathbf{v}| = 9 \) - \( \theta = \frac{5\pi}{6} \) First, we calculate \( \sin \theta \): \[ \sin\left(\frac{5\pi}{6}\right) = \sin\left(\pi - \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] Now we can substitute the values into the formula: \[ |\mathbf{u} \times \mathbf{v}| = 3 \cdot 9 \cdot \sin\left(\frac{5\pi}{6}\right) = 3 \cdot 9 \cdot \frac{1}{2} \] Calculating this gives: \[ |\mathbf{u} \times \mathbf{v}| = 27 \cdot \frac{1}{2} = \frac{27}{2} \] Thus, the final answer is: \[ |\mathbf{u} \times \mathbf{v}| = \frac{27}{2} \]