Question 1 [6] Given \[ \begin{array}{l} \mathrm{AB}=4,9 \mathrm{~cm}, \mathrm{AD}=8.5 \mathrm{~cm}, \mathrm{AF}=11,8 \mathrm{~cm} \text { and } \mathrm{AH}=13,9 \mathrm{~cm} \\ \mathrm{AC}=5,4 \mathrm{~cm} . \mathrm{AE}=9,4 \mathrm{~cm} . \mathrm{AG}=15 \mathrm{~cm} \text { and } \mathrm{AJ}=15,3 \mathrm{~cm} \\ \mathrm{CB}=23 \mathrm{~cm}, \mathrm{ED}=4 \mathrm{~cm} . \mathrm{GF}=5,5 \mathrm{~cm} \text { and } \mathrm{II}=6,4 \mathrm{~cm} \end{array} \] 11. Coryplece the similar triangles by writing the lecters of the trangles in the correct order. \( \triangle A B C\|\| \) \( \qquad \) III \( \Delta \) \( \qquad \) ||| \( \Delta \) \( \qquad \) (3) 12 Why are the four manglo similar to each other?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Triangles are not just shapes; they have stories! The concept of similar triangles dates back to ancient Greece when mathematicians like Euclid were exploring geometry. They noticed that certain triangles could relate to each other through proportions, which led to the development of fascinating theories, like the Side-Splitter Theorem. This allows us to understand not just the properties of triangles, but how they can fit together in the world around us! In real life, similar triangles pop up everywhere! For instance, they help engineers calculate heights of structures that are hard to measure directly. If you can measure the height of a shorter object and use similar triangles, you can figure out the height of a skyscraper just by measuring the shadow it casts and your distance from it! It’s like a geometric magic trick that makes problem-solving a breeze.