Pregunta
upstudy study bank question image url

Chapter 3 HW- Probability Topics +A! Category: Homework Consider the following scenario: Let \( \mathrm{P}(C)=0.4 \). Let \( \mathrm{P}(D)=0.7 \). Let \( \mathrm{P}(C \mid D)=0.32 \). Note: Give your answers in their exact decimal forms. (a) FindP \( (C \) AND \( D) \). \[ \mathrm{P}(C \text { AND } D)=0.224 \] (b) Are \( C \) and \( D \) mutually exclusive? Why or why not? A \( C \) and \( D \) are not mutually exclusive because \( \mathrm{P}(C \mid D) \neq \mathrm{P}(C)+\mathrm{P}(D) \). B \( C \) and \( D \) are not mutually exclusive because \( \mathrm{P}(C \) AND \( D) \neq 0 \). C \( C \) and \( D \) are mutually exclusive because \( \mathrm{P}(C \) AND \( D)=0 \). D \( C \) and \( D \) are mutually exclusive because \( \mathrm{P}(C)>\mathrm{P}(C \mid D) \). Your answer is correct. (c) Are \( C \) and \( D \) independent events? Why or why not? A \( C \) and \( D \) are independent because \( \mathrm{P}(C \) AND \( D) \neq 0 \).

Ask by Lyons Curry. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( C \) and \( D \) are not independent because \( \mathrm{P}(C \text{ AND } D) \neq \mathrm{P}(C) \times \mathrm{P}(D) \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To better understand probabilities, let's dive into a bit of historical context! The study of probability dates back to the 16th century, with the likes of Girolamo Cardano and later, Blaise Pascal and Pierre de Fermat, laying the groundwork through their work on gambling and games of chance. Their mathematical explorations unlocked a new way of thinking about uncertainty, leading to today's modern probability theory which is critical in statistics, finance, and various sciences. Now, let’s talk real-world applications! Probability isn't just a concept found in textbooks; it’s applied everywhere! From weather forecasting, where meteorologists use probabilities to predict rain, to sports analytics, where teams evaluate player performance based on statistical probabilities, the impact is profound. Even in medicine, probabilities help in understanding the effectiveness of new drugs in clinical trials. So, next time you check the weather app or consider your fantasy football lineup, remember: it’s all about the probabilities!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad