Pregunta
upstudy study bank question image url

Sixty boys and girls divided a sum of \( \$ 51 \). If each boy gets 79 cents and each girl gets 139 cents, what is the number of boys and girls in the group?

Ask by Nichols Norris. in Australia
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are 54 boys and 6 girls in the group.

Solución

Let’s denote: - \( b \) as the number of boys - \( g \) as the number of girls We are given two main pieces of information: 1. **Total number of children:** \[ b + g = 60 \] 2. **Total amount of money distributed:** Each boy receives \$0.79 and each girl receives \$1.39, summing up to \$51. \[ 0.79b + 1.39g = 51 \] To eliminate decimals, multiply the second equation by 100: \[ 79b + 139g = 5100 \] **Substituting \( b = 60 - g \) into the equation:** \[ 79(60 - g) + 139g = 5100 \] \[ 4740 - 79g + 139g = 5100 \] \[ 4740 + 60g = 5100 \] \[ 60g = 5100 - 4740 \] \[ 60g = 360 \] \[ g = \frac{360}{60} = 6 \] **Finding the number of boys:** \[ b = 60 - g = 60 - 6 = 54 \] **Verification:** - Amount for boys: \( 54 \times 0.79 = 42.66 \) dollars - Amount for girls: \( 6 \times 1.39 = 8.34 \) dollars - Total: \( 42.66 + 8.34 = 51.00 \) dollars (matches the given total) **Conclusion:** There are **54 boys and 6 girls** in the group. **Answer:** 54 boys and 6 girls are in the group.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let the number of boys be \( b \) and the number of girls be \( g \). According to the problem, we have two equations based on the given information: 1. The total number of boys and girls is 60: \[ b + g = 60 \] 2. The total amount of money distributed is \( \$51 \), which is \( 5100 \) cents. Each boy receives 79 cents and each girl receives 139 cents, leading to: \[ 79b + 139g = 5100 \] Now, we can solve these equations step by step. First, we can solve the first equation for \( g \): \[ g = 60 - b \] Next, we can substitute this expression for \( g \) into the second equation: \[ 79b + 139(60 - b) = 5100 \] Expanding this gives: \[ 79b + 8340 - 139b = 5100 \] Now, combine like terms: \[ -60b + 8340 = 5100 \] Next, subtract 8340 from both sides: \[ -60b = 5100 - 8340 \] \[ -60b = -3240 \] Dividing both sides by -60, we find: \[ b = \frac{3240}{60} = 54 \] Now that we have \( b \), we can find \( g \): \[ g = 60 - 54 = 6 \] Thus, the number of boys is \( 54 \), and the number of girls is \( 6 \). In conclusion, there are \( 54 \) boys and \( 6 \) girls in the group.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad