Pregunta
upstudy study bank question image url

A game involves tossing two coins. A player wins \( \$ 1.00 \) if both tosses result in heads. What should you pay to play this game in order to make it a fair game? Explain your reasoning. You should pay \( \$ \square \) to play this game in order to make it a fair game.

Ask by Love Hilton. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You should pay \$0.25 to play the game to make it fair.

Solución

To determine a fair price for playing the game, we need to calculate the **expected value** of the game. A fair game is one where the expected value is zero, meaning the cost to play equals the expected winnings. Here's the step-by-step reasoning: 1. **Determine the Probability of Winning:** - Since the game involves tossing two fair coins, each coin has two possible outcomes: Heads (H) or Tails (T). - The possible outcomes for two coins are: HH, HT, TH, TT. - Only one of these four outcomes results in both coins being heads (HH). - **Probability of winning (both heads):** \( \frac{1}{4} \) or 25%. 2. **Calculate the Expected Winnings:** - If you win, you receive \$1.00. - **Expected Winnings:** Probability of winning × Amount won = \( \frac{1}{4} \times \$1.00 = \$0.25 \). 3. **Determine the Fair Price to Play:** - To make the game fair, the cost to play should equal the expected winnings. - Therefore, you should pay **\$0.25** to play the game. **Conclusion:** You should pay **\$0.25** to play this game in order to make it a fair game. $\boxed{0.25}$

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

In this coin-tossing game, there are four possible outcomes: HH (both heads), HT (heads then tails), TH (tails then heads), and TT (both tails). The winning outcome, HH, occurs with a probability of \( \frac{1}{4} \), while the other outcomes occur with a cumulative probability of \( \frac{3}{4} \). To create a fair game, your expected winnings should equal your cost to play. Thus, if you win \( \$ 1.00 \) with a \( \frac{1}{4} \) chance, your expected value from playing is \( 1 \times \frac{1}{4} = \$0.25 \). Therefore, you should pay \( \$0.25 \) to keep the game fair. To make it even more exciting, consider the concept of the "expected value." In games of chance, it's essential to assess how much you might win or lose on average. Understanding this concept can help you make more informed decisions when playing other games, ensuring that you know when the odds are in your favor or not!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad