Use the Half-angle Formulas to find the exact value of the expression \( \sin \left(-\frac{7 \pi}{8}\right) \) \( \sin \left(-\frac{7 \pi}{8}\right)=\square \) (Type an exact answer, using radicals as needed. Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find \( \sin \left(-\frac{7 \pi}{8}\right) \), let's first rewrite the angle using the positive angle. We know that \( \sin(-x) = -\sin(x) \): \[ \sin \left(-\frac{7 \pi}{8}\right) = -\sin \left(\frac{7 \pi}{8}\right) \] Now, to evaluate \( \sin \left(\frac{7 \pi}{8}\right) \), we can use the half-angle formula. We have: \[ \frac{7 \pi}{8} = \frac{1}{2} \times \frac{7 \pi}{4} \] We can express \( \frac{7 \pi}{8} \) as \( \pi - \frac{\pi}{8} \), which implies: \[ \sin \left(\frac{7 \pi}{8}\right) = \sin \left(\pi - \frac{\pi}{8}\right) = \sin \left(\frac{\pi}{8}\right) \] Next, we can apply the half-angle formula for sine: \[ \sin \left(\frac{\pi}{8}\right) = \sqrt{\frac{1 - \cos \left(\frac{\pi}{4}\right)}{2}} = \sqrt{\frac{1 - \frac{\sqrt{2}}{2}}{2}} = \sqrt{\frac{2 - \sqrt{2}}{4}} = \frac{\sqrt{2 - \sqrt{2}}}{2} \] Thus, substituting back into our original expression: \[ \sin \left(-\frac{7 \pi}{8}\right) = -\frac{\sqrt{2 - \sqrt{2}}}{2} \] The final answer is: \[ \sin \left(-\frac{7 \pi}{8}\right) = -\frac{\sqrt{2 - \sqrt{2}}}{2} \]