Pregunta
upstudy study bank question image url

Which set of equations intersect at \( (2,-1) ? \) A. \( \left\{\begin{array}{l}y=3+x \\ y=-x+1\end{array}\right. \) B. \( \left\{\begin{array}{l}y=2 x-1 \\ y=1-x\end{array}\right. \) C. \( \left\{\begin{array}{l}y=3 x \\ y=2 x-1\end{array}\right. \) D. \( \left\{\begin{array}{l}y=2 x-5 \\ y=1-x\end{array}\right. \)

Ask by Owen Moreno. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Option D intersects at \( (2, -1) \).

Solución

Let's determine which set of equations has the point \( (2, -1) \) as their intersection. **Option A:** \[ \begin{cases} y = x + 3 \\ y = -x + 1 \end{cases} \] - Substitute \( x = 2 \) into the first equation: \( y = 2 + 3 = 5 \) (which is not \(-1\)). **Option B:** \[ \begin{cases} y = 2x - 1 \\ y = 1 - x \end{cases} \] - Substitute \( x = 2 \) into the first equation: \( y = 4 - 1 = 3 \) (which is not \(-1\)). **Option C:** \[ \begin{cases} y = 3x \\ y = 2x - 1 \end{cases} \] - Substitute \( x = 2 \) into the first equation: \( y = 6 \) (which is not \(-1\)). **Option D:** \[ \begin{cases} y = 2x - 5 \\ y = 1 - x \end{cases} \] - Substitute \( x = 2 \) into the first equation: \( y = 4 - 5 = -1 \). - Substitute \( x = 2 \) into the second equation: \( y = 1 - 2 = -1 \). Both equations in Option D are satisfied by the point \( (2, -1) \). **Answer:** D

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To figure out which set of equations intersects at the point \( (2, -1) \), we must substitute \( x = 2 \) into each equation and check if \( y \) equals -1. For option A: 1. \( y = 3 + 2 = 5 \) (not -1) 2. \( y = -2 + 1 = -1 \) (this one works) For option B: 1. \( y = 2(2) - 1 = 4 - 1 = 3 \) (not -1) 2. \( y = 1 - 2 = -1 \) (not a match) For option C: 1. \( y = 3(2) = 6 \) (not -1) 2. \( y = 2(2) - 1 = 4 - 1 = 3 \) (not a match) For option D: 1. \( y = 2(2) - 5 = 4 - 5 = -1 \) (this one works) 2. \( y = 1 - 2 = -1 \) (this also works) Thus, options A and D both intersect at \( (2, -1) \), but only D has both equations satisfying that point. So, the correct answer is **D**. A fun fact: finding intersections of equations is like connecting dots in a connect-the-dots puzzle; you never know what shape or picture you'll uncover until you join those lines! And if you're ever puzzled by these problems, remember that graphing can be your best friend—like plotting a treasure map to the hidden intersection!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad