Decide whether each relation defines \( y \) as a function of \( x \). Give the domain and range. \( y=\frac{3}{x-3} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
![](/pmw/light_bulb.png?etag=525fd69ac661e11754e2fc9f1b18a4ee)
![](/pmw/spiral_notepad.png?etag=abe3906b7558c543a7b30ba53a3b5a5b)
Beyond the Answer
The relation \( y = \frac{3}{x-3} \) does define \( y \) as a function of \( x \) because for every value of \( x \) (except for one specific value), there is exactly one corresponding value of \( y \). The only exception is when \( x = 3 \), which makes the denominator zero, resulting in an undefined value for \( y \). The domain of this function is all real numbers except \( 3 \), so we express it as \( \text{Domain} = (-\infty, 3) \cup (3, \infty) \). The range of the function consists of all real numbers except for \( 0 \), because no matter what \( x \) is chosen, \( y \) will never equal \( 0 \). Therefore, we write the range as \( \text{Range} = (-\infty, 0) \cup (0, \infty) \).
![](/pmw/img-try-permium.webp)