Pregunta
upstudy study bank question image url

Sketch the graph of the function. \( g(x)=\left\{\begin{array}{ll}x+2, & x \leq-4 \\ \frac{1}{2} x-6, & x>-4\end{array}\right. \)

Ask by Klein Pope. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To sketch the graph of the piecewise function \( g(x) \), follow these steps: 1. **For \( x \leq -4 \):** - Plot the line \( y = x + 2 \). - Include the point \((-4, -2)\) with a closed circle. 2. **For \( x > -4 \):** - Plot the line \( y = \frac{1}{2}x - 6 \). - Place an open circle at \((-4, -8)\) since \( x = -4 \) is not included. 3. **Discontinuity:** - There's a jump from \(-2\) to \(-8\) at \( x = -4 \). The graph consists of two straight lines with different slopes meeting at \( x = -4 \) with a jump discontinuity.

Solución

To sketch the graph of the piecewise function \[ g(x) = \begin{cases} x + 2, & x \leq -4 \\ \frac{1}{2}x - 6, & x > -4 \end{cases} \] follow these steps: ### 1. **Understand Each Piece of the Function** - **For \( x \leq -4 \):** The function is \( g(x) = x + 2 \). - **Slope:** 1 - **Y-intercept:** (0, 2) - **For \( x > -4 \):** The function is \( g(x) = \frac{1}{2}x - 6 \). - **Slope:** 0.5 - **Y-intercept:** (0, -6) ### 2. **Determine Key Points and Continuity** - **At \( x = -4 \):** - **From the left (\( x \leq -4 \)):** \( g(-4) = (-4) + 2 = -2 \) So, the point \((-4, -2)\) is included in this part of the graph. - **From the right (\( x > -4 \)):** \( \lim_{x \to -4^+} g(x) = \frac{1}{2}(-4) - 6 = -2 - 6 = -8 \) Since \( x > -4 \) does not include \( x = -4 \), we represent this with an open circle at \((-4, -8)\). - **Continuity Check:** The left-hand limit at \( x = -4 \) is \(-2\), and the right-hand limit is \(-8\). Since \(-2 \neq -8\), there is a **jump discontinuity** at \( x = -4 \). ### 3. **Plotting the Graph** Here's how you can sketch the graph step-by-step: #### **a. Plotting \( g(x) = x + 2 \) for \( x \leq -4 \):** - **Choose points:** - \( x = -6 \): \( g(-6) = -6 + 2 = -4 \) → \((-6, -4)\) - \( x = -5 \): \( g(-5) = -5 + 2 = -3 \) → \((-5, -3)\) - \( x = -4 \): \( g(-4) = -4 + 2 = -2 \) → \((-4, -2)\) **(Closed circle)** - **Draw the line** passing through these points extending to the left. #### **b. Plotting \( g(x) = \frac{1}{2}x - 6 \) for \( x > -4 \):** - **Choose points:** - \( x = -2 \): \( g(-2) = \frac{1}{2}(-2) - 6 = -1 - 6 = -7 \) → \((-2, -7)\) - \( x = 0 \): \( g(0) = 0 - 6 = -6 \) → \((0, -6)\) - \( x = 2 \): \( g(2) = \frac{1}{2}(2) - 6 = 1 - 6 = -5 \) → \((2, -5)\) - **At \( x = -4 \):** Open circle at \((-4, -8)\) to indicate that this point is not included in this part of the graph. - **Draw the line** passing through these points extending to the right. ### 4. **Final Graph Overview** - **For \( x \leq -4 \):** A straight line with slope 1 passing through \((-4, -2)\). Include the point \((-4, -2)\) with a closed circle. - **For \( x > -4 \):** A straight line with slope 0.5 starting just after \( x = -4 \) with an open circle at \((-4, -8)\), passing through points like \((-2, -7)\), \((0, -6)\), and so on. - **Discontinuity:** Notice the jump from \(-2\) to \(-8\) at \( x = -4 \), indicating a jump discontinuity. ### 5. **Visual Representation** While I can't provide a visual sketch here, you can follow these instructions to draw the graph: 1. **Draw the Axes:** Draw horizontal (x-axis) and vertical (y-axis) lines intersecting at the origin. 2. **Plot the First Line (\( x \leq -4 \)):** - Plot points \((-6, -4)\), \((-5, -3)\), and \((-4, -2)\). - Connect these points with a straight line extending to the left. - Place a **closed circle** at \((-4, -2)\). 3. **Plot the Second Line (\( x > -4 \)):** - Plot points \((-2, -7)\), \((0, -6)\), and \((2, -5)\). - Connect these points with a straight line extending to the right. - Place an **open circle** at \((-4, -8)\) to indicate that this point is not included. 4. **Label Key Points:** Clearly label the points where the function changes its definition and the points of discontinuity. ### 6. **Summary** - **Lines:** Two distinct straight lines with different slopes. - **Continuity:** Jump discontinuity at \( x = -4 \). - **Behavior:** For \( x \leq -4 \), the function increases with a slope of 1. For \( x > -4 \), it increases more slowly with a slope of 0.5. By following these steps, you should be able to accurately sketch the graph of the piecewise function \( g(x) \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To sketch the graph of the function \( g(x) \), we first need to analyze the two pieces of the function separately. For \( x \leq -4 \), the function is defined as a linear equation \( g(x) = x + 2 \). This means that at \( x = -4 \), \( g(-4) = -4 + 2 = -2 \). Plot the point (-4, -2) and draw a line with a slope of 1 extending leftward. For \( x > -4 \), the function changes to \( g(x) = \frac{1}{2}x - 6 \). To find the point at \( x = -4 \), we calculate \( g(-4) = \frac{1}{2}(-4) - 6 = -2 - 6 = -8 \). Notice that since we only consider \( x > -4 \), this point is not included in this part of the graph. Instead, at \( x = 0 \), we can calculate \( g(0) = \frac{1}{2}(0) - 6 = -6 \). This gives us another point (0, -6) to plot. Connect the points established for \( x > -4 \) with a line that has a slope of \( \frac{1}{2} \). When sketching the entire function, be sure to indicate that the point (-4, -2) is solid (included in the graph) and the point (-4, -8) is hollow (not included) to show the transition between the two pieces!

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad