Pregunta
upstudy study bank question image url

O3/02/25 Grade 10 Factorise \( \begin{array}{ll}\text { a } x^{2}-7 x+12 & \text { () } 40 x^{2}+6 x y-18 y^{2} \\ \text { (b) } 2 x^{2}+12 x+18 & \text { (c) } 24 x^{2}-2 x y-y^{2} \\ \text { (c) } x^{2}-9 x+20 & \text { (j) } 3 x^{2}+19 x+20 \\ \text { d) } 3 x^{2}-9 x+24 & \\ \text { (e) } 2 x^{2}+5 x+3 & \\ \text { (t) } 3 x^{2}+4 x-4 & \\ \text { (g) } 5 x^{3} y+25 x^{2} y-30 x y\end{array} \)

Ask by Bob Barker. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the factorized forms of the given expressions: a) \(x^{2} - 7x + 12 = (x - 3)(x - 4)\) b) \(40x^{2} + 6xy - 18y^{2} = 2(5x - 3y)(4x + 3y)\) c) \(2x^{2} + 12x + 18 = 2(x + 3)^{2}\) d) \(24x^{2} - 2xy - y^{2} = (6x + y)(4x - y)\) e) \(x^{2} - 9x + 20 = (x - 4)(x - 5)\) f) \(3x^{2} + 19x + 20 = (3x + 4)(x + 5)\) g) \(3x^{2} - 9x + 24 = 3(x^{2} - 3x + 8)\) h) \(2x^{2} + 5x + 3 = (2x + 3)(x + 1)\) i) \(3x^{2} + 4x - 4 = (3x - 2)(x + 2)\) j) \(5x^{3}y + 25x^{2}y - 30xy = 5xy(x + 6)(x - 1)\)

Solución

Sure, let's factorize each of the given expressions step by step. --- ### **a) \(x^{2} - 7x + 12\)** **Factorization:** \[ x^{2} - 7x + 12 = (x - 3)(x - 4) \] **Explanation:** We look for two numbers that multiply to **12** and add up to **-7**. These numbers are **-3** and **-4**. --- ### **b) \(40x^{2} + 6xy - 18y^{2}\)** **Factorization:** \[ 40x^{2} + 6xy - 18y^{2} = 2(5x - 3y)(4x + 3y) \] **Explanation:** 1. **Factor out the Greatest Common Factor (GCF):** \(40x^{2} + 6xy - 18y^{2} = 2(20x^{2} + 3xy - 9y^{2})\) 2. **Factor the quadratic:** \(20x^{2} + 3xy - 9y^{2} = (5x - 3y)(4x + 3y)\) --- ### **c) \(2x^{2} + 12x + 18\)** **Factorization:** \[ 2x^{2} + 12x + 18 = 2(x + 3)^{2} \] **Explanation:** 1. **Factor out the GCF:** \(2x^{2} + 12x + 18 = 2(x^{2} + 6x + 9)\) 2. **Recognize a perfect square trinomial:** \(x^{2} + 6x + 9 = (x + 3)^{2}\) --- ### **d) \(24x^{2} - 2xy - y^{2}\)** **Factorization:** \[ 24x^{2} - 2xy - y^{2} = (6x + y)(4x - y) \] **Explanation:** We look for two binomials that multiply to give the original quadratic: \[ (6x + y)(4x - y) = 24x^{2} - 2xy - y^{2} \] --- ### **e) \(x^{2} - 9x + 20\)** **Factorization:** \[ x^{2} - 9x + 20 = (x - 4)(x - 5) \] **Explanation:** We look for two numbers that multiply to **20** and add up to **-9**. These numbers are **-4** and **-5**. --- ### **f) \(3x^{2} + 19x + 20\)** **Factorization:** \[ 3x^{2} + 19x + 20 = (3x + 4)(x + 5) \] **Explanation:** We find two numbers that multiply to \(3 \times 20 = 60\) and add up to **19**. These numbers are **15** and **4**. \[ 3x^{2} + 19x + 20 = 3x^{2} + 15x + 4x + 20 = (3x + 4)(x + 5) \] --- ### **g) \(3x^{2} - 9x + 24\)** **Factorization:** \[ 3x^{2} - 9x + 24 = 3(x^{2} - 3x + 8) \] **Explanation:** 1. **Factor out the GCF:** \(3x^{2} - 9x + 24 = 3(x^{2} - 3x + 8)\) 2. **Note:** The quadratic \(x^{2} - 3x + 8\) does not factor neatly with integers, so we leave it as is. --- ### **h) \(2x^{2} + 5x + 3\)** **Factorization:** \[ 2x^{2} + 5x + 3 = (2x + 3)(x + 1) \] **Explanation:** We look for two numbers that multiply to \(2 \times 3 = 6\) and add up to **5**. These numbers are **3** and **2**. \[ 2x^{2} + 5x + 3 = (2x + 3)(x + 1) \] --- ### **i) \(3x^{2} + 4x - 4\)** **Factorization:** \[ 3x^{2} + 4x - 4 = (3x - 2)(x + 2) \] **Explanation:** We look for two numbers that multiply to \(3 \times (-4) = -12\) and add up to **4**. These numbers are **6** and **-2**. \[ 3x^{2} + 4x - 4 = 3x^{2} + 6x - 2x - 4 = (3x - 2)(x + 2) \] --- ### **j) \(5x^{3}y + 25x^{2}y - 30xy\)** **Factorization:** \[ 5x^{3}y + 25x^{2}y - 30xy = 5xy(x + 6)(x - 1) \] **Explanation:** 1. **Factor out the GCF:** \(5xy\) 2. **Factor the quadratic:** \(x^{2} + 5x - 6 = (x + 6)(x - 1)\) 3. **Combine:** \(5xy(x + 6)(x - 1)\) --- These are the fully factorized forms of the given expressions. If you have any further questions or need additional explanations, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's break these down with a spark of fun! For the first one, \(ax^2 - 7x + 12\): To factor this quadratic, think of two numbers that add up to -7 and multiply to 12. Those numbers are -3 and -4! So it factors to \(a(x - 3)(x - 4)\). Now, let's tackle \(5x^3y + 25x^2y - 30xy\): Here, the common factor is \(5xy\). Pull that out, and you get \(5xy(x^2 + 5x - 6)\). Next, factor the binomial as \((x + 6)(x - 1)\). So altogether, it's \(5xy(x + 6)(x - 1)\). Factor fun never ends, right?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad