\begin{tabular}{l} The kinetic energy \( E \) \\ of a moving object is \\ given by \( E=\frac{1}{2} m v^{2} \), \\ where \( m \) is its mass in \\ kilograms and \( v \) is its \\ velocity in \\ meters/second. \\ Graph this equation \\ for a vehicle with a \\ mass of 800 kg using \\ a calculator or other \\ technology. \\ What is the velocity when the kinetic \\ energy is 160000 J? \\ Write all answers on the same line \\ separated by commas. \\ \( v= \) \\ \hline Fnter your next step here \\ \( m / s \)\end{tabular}
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the velocity when the kinetic energy is 160,000 J, we can rearrange the equation \( E = \frac{1}{2} m v^2 \) to solve for \( v \). First, we have: \[ 160000 = \frac{1}{2} \times 800 \times v^2 \] Now, multiplying both sides by 2: \[ 320000 = 800 v^2 \] Next, divide both sides by 800: \[ v^2 = 400 \] Finally, take the square root of both sides to find \( v \): \[ v = \sqrt{400} = 20 \, m/s \] So, \( v = 20 \, m/s \).