Pregunta
Solve the following equation by factoring. \[ z^{2}+2 z-15=0 \] Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is \( \{\square\} \). (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. There is no solution.
Ask by Wood Brewer. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The solutions are \( z = -5 \) and \( z = 3 \).
Solución
To solve the quadratic equation by factoring:
\[
z^{2} + 2z - 15 = 0
\]
1. **Factor the quadratic:**
We look for two numbers that multiply to **-15** and add up to **2**. These numbers are **5** and **-3**.
\[
z^{2} + 2z - 15 = (z + 5)(z - 3) = 0
\]
2. **Find the solutions:**
Set each factor equal to zero:
\[
z + 5 = 0 \quad \Rightarrow \quad z = -5
\]
\[
z - 3 = 0 \quad \Rightarrow \quad z = 3
\]
**Answer:**
**A. The solution set is \( \{-5, 3\} \).**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To solve the equation \( z^{2}+2z-15=0 \) by factoring, we need to find two numbers that multiply to \(-15\) (the constant term) and add up to \(2\) (the coefficient of \(z\)). The numbers \(5\) and \(-3\) satisfy these conditions. Thus, we can factor the equation as: \[ (z + 5)(z - 3) = 0 \] Setting each factor equal to zero gives us the solutions: \[ z + 5 = 0 \quad \Rightarrow \quad z = -5 \] \[ z - 3 = 0 \quad \Rightarrow \quad z = 3 \] Therefore, the solution set is \(\{-5, 3\}\). A. The solution set is \(\{-5, 3\}\\).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium