Pregunta
upstudy study bank question image url

  1. The graph shows the amount of a chemical in a water sample it is decreasing
    exponentially.
    Find the coordinates of the points labeled , and . Explain your reasoning

Ask by Christensen Schmidt. in the United States
Jan 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Points , , and are located at , , and respectively, where is the initial amount and is the half-life of the chemical.

Solución

To determine the coordinates of points , , and on an exponential decay graph representing the amount of a chemical in a water sample over time, we’ll first understand the general behavior of exponential decay and then apply this understanding to identify the key points.

Understanding Exponential Decay

Exponential decay can be modeled by the equation:
Where:
  • is the amount of the chemical at time .
  • is the initial amount of the chemical at .
  • is the decay constant (a positive number).
  • is Euler’s number (approximately 2.71828).
Key characteristics of the graph:
  • Initial Value: At , the amount is .
  • Asymptote: The graph approaches but never touches the horizontal axis ( ).
  • Half-Life: The time it takes for the amount to reduce to half its initial value.

Identifying Points , , and

Assuming the points are labeled at significant moments in the decay process, here’s how you might identify their coordinates:
  1. Point : Initial Amount
    • Location: At time .
    • Coordinates: .
    • Reasoning: This represents the starting quantity of the chemical before any decay has occurred.
  2. Point : Amount After One Half-Life
    • Location: At time (one half-life).
    • Coordinates: .
    • Reasoning: After one half-life, the amount of the chemical decreases to half its initial value.
  3. Point : Amount After Two Half-Lives
    • Location: At time (two half-lives).
    • Coordinates: .
    • Reasoning: After two half-lives, the amount decreases to one-quarter of the initial value.

Example

Let’s assume the initial amount is 100 grams, and the half-life is 5 hours.
  • Point :
  • Point :
  • Point :

Visualization

Here’s a rough sketch of how these points appear on the graph:
Amount
 |               
100 |A
 |                
 |                
50  |        B
 |                 
 |                
25  |                C
 |____________________________ Time
    0    5      10      15 ...

Summary

  • Point is always at , representing the initial quantity.
  • Point is at , showing the amount after one half-life.
  • Point is at , indicating the amount after two half-lives.
By identifying key moments in the decay process—such as the initial time, one half-life, and subsequent half-lives—you can accurately determine the coordinates of points labeled on an exponential decay graph.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the coordinates of points , and on an exponentially decreasing graph, you can identify specific points where the chemical concentration is markedly different from others. For example, if point represents the maximum concentration at the starting time (let’s say ), point could represent a concentration at a half-life (e.g., ), and point might denote a point where the concentration approaches zero (like ).
The reasoning lies in recognizing how exponential decay functions behave: they start at a certain value and decrease relatively quickly at first, tapering off more slowly as you move along the x-axis. Therefore, knowing the form of the decay equation will give hints about specific points on the graph where significant changes occur.

Latest Chemistry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad