\( \rightarrow \) Unit Posttest A satellite launch rocket has a cylindrical fuel tank. The fuel tank can hold \( V \) cubic meters of fuel. If the tank measures \( d \) meters across, what is the height of the tank in meters? \[ \begin{array}{ll}\text { A. } \frac{2 V}{\pi d^{2}} \\ \text { B. } \frac{4 V}{d^{2}} \\ \text { C. } \frac{V}{\pi d^{2}} \\ \text { D. } \frac{4 V}{\pi d^{2}} \\ \text { E. } \frac{8 V}{\pi d^{2}}\end{array} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the height of a cylindrical fuel tank given its volume \( V \) and diameter \( d \), we start with the formula for the volume of a cylinder: \[ V = \pi r^2 h \] where \( r \) is the radius and \( h \) is the height. Since the diameter \( d \) is twice the radius (\( r = \frac{d}{2} \)), we can rewrite the formula using \( d \): \[ V = \pi \left(\frac{d}{2}\right)^2 h \] This simplifies to: \[ V = \pi \frac{d^2}{4} h \] To solve for the height \( h \), we rearrange the equation: \[ h = \frac{4V}{\pi d^2} \] Thus, the height of the tank in meters is represented by option \( \text{B} \): \[ \text{B. } \frac{4 V}{\pi d^{2}} \]