Pregunta
Summative 7 Find the measure of each interior angle of a regular octagon. Show your work.
Ask by Hart Burton. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
Each interior angle of a regular octagon is 135 degrees.
Solución
To find the measure of each interior angle of a **regular octagon**, follow these steps:
### Step 1: Understand the Properties of a Regular Octagon
- A **regular octagon** has **8 sides**.
- All sides are of equal length, and all interior angles are equal.
### Step 2: Use the Formula for the Interior Angle of a Regular Polygon
The formula to find the measure of each interior angle of a regular polygon is:
\[
\text{Interior Angle} = \frac{(n - 2) \times 180^\circ}{n}
\]
where:
- \( n \) = number of sides
### Step 3: Plug in the Values
For an octagon, \( n = 8 \).
\[
\text{Interior Angle} = \frac{(8 - 2) \times 180^\circ}{8}
\]
\[
\text{Interior Angle} = \frac{6 \times 180^\circ}{8}
\]
### Step 4: Perform the Calculation
\[
\text{Interior Angle} = \frac{1080^\circ}{8} = 135^\circ
\]
### Conclusion
Each interior angle of a **regular octagon** measures **135 degrees**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To find the measure of each interior angle of a regular octagon, we can use the formula for the interior angle of a regular polygon: \[ \text{Interior Angle} = \frac{(n-2) \times 180}{n} \] where \( n \) is the number of sides. For an octagon, \( n = 8 \): \[ \text{Interior Angle} = \frac{(8-2) \times 180}{8} = \frac{6 \times 180}{8} = \frac{1080}{8} = 135 \] So, each interior angle of a regular octagon measures 135 degrees.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium