Pregunta
upstudy study bank question image url

11. Suzy spent \( 6 \frac{7}{8} \) days working on her English paper, \( 3 \frac{1}{6} \) days doing her science project, and \( 1 \frac{1}{2} \) days studying for her math test. How many more days did Suzy spend on her English paper and math test combined than on her science project?

Ask by Thornton Watson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Suzy spent \(5 \frac{5}{24}\) days more on her English paper and math test combined than on her science project.

Solución

To determine how many more days Suzy spent on her English paper and math test combined than on her science project, we'll follow these steps: 1. **Convert Mixed Numbers to Improper Fractions** 2. **Calculate the Total Days for English Paper and Math Test** 3. **Calculate the Days Spent on Science Project** 4. **Find the Difference** Let's go through each step in detail. --- ### 1. Convert Mixed Numbers to Improper Fractions First, convert all mixed numbers to improper fractions for easier calculations. - **English Paper:** \(6 \frac{7}{8}\) \[ 6 \frac{7}{8} = \frac{6 \times 8 + 7}{8} = \frac{48 + 7}{8} = \frac{55}{8} \] - **Science Project:** \(3 \frac{1}{6}\) \[ 3 \frac{1}{6} = \frac{3 \times 6 + 1}{6} = \frac{18 + 1}{6} = \frac{19}{6} \] - **Math Test:** \(1 \frac{1}{2}\) \[ 1 \frac{1}{2} = \frac{1 \times 2 + 1}{2} = \frac{2 + 1}{2} = \frac{3}{2} \] --- ### 2. Calculate the Total Days for English Paper and Math Test Add the days spent on the English paper and the math test: \[ \frac{55}{8} + \frac{3}{2} \] To add these fractions, they need a common denominator. The least common denominator (LCD) of 8 and 2 is 8. Convert \(\frac{3}{2}\) to have a denominator of 8: \[ \frac{3}{2} = \frac{3 \times 4}{2 \times 4} = \frac{12}{8} \] Now, add the fractions: \[ \frac{55}{8} + \frac{12}{8} = \frac{55 + 12}{8} = \frac{67}{8} \] Convert \(\frac{67}{8}\) back to a mixed number: \[ \frac{67}{8} = 8 \frac{3}{8} \text{ days} \] --- ### 3. Calculate the Days Spent on Science Project Suzy spent: \[ \frac{19}{6} \text{ days on her science project} \] --- ### 4. Find the Difference Subtract the days spent on the science project from the combined days for the English paper and math test: \[ \frac{67}{8} - \frac{19}{6} \] Find a common denominator for 8 and 6, which is 24. Convert both fractions: \[ \frac{67}{8} = \frac{67 \times 3}{8 \times 3} = \frac{201}{24} \] \[ \frac{19}{6} = \frac{19 \times 4}{6 \times 4} = \frac{76}{24} \] Subtract the fractions: \[ \frac{201}{24} - \frac{76}{24} = \frac{125}{24} \] Convert \(\frac{125}{24}\) to a mixed number: \[ \frac{125}{24} = 5 \frac{5}{24} \text{ days} \] --- ### **Conclusion** Suzy spent **\(5 \frac{5}{24}\) days** more on her English paper and math test combined than on her science project.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find out how many more days Suzy spent on her English paper and math test combined than on her science project, we first need to add the days for her English paper and math test together. Suzy spent: - \( 6 \frac{7}{8} \) days on her English paper - \( 1 \frac{1}{2} \) days on her math test Let's convert these mixed numbers to improper fractions: - \( 6 \frac{7}{8} = \frac{6 \times 8 + 7}{8} = \frac{48 + 7}{8} = \frac{55}{8} \) - \( 1 \frac{1}{2} = \frac{1 \times 2 + 1}{2} = \frac{2 + 1}{2} = \frac{3}{2} = \frac{12}{8} \) (when converted to an equivalent fraction with a denominator of 8) Now, we can add these two values together: \[ \frac{55}{8} + \frac{12}{8} = \frac{55 + 12}{8} = \frac{67}{8} \] Next, let's convert her science project time to an improper fraction: - \( 3 \frac{1}{6} = \frac{3 \times 6 + 1}{6} = \frac{18 + 1}{6} = \frac{19}{6} \) To compare these, we will need a common denominator. The least common multiple of 8 and 6 is 24. Now, let's convert both fractions: \[ \frac{67}{8} = \frac{67 \times 3}{8 \times 3} = \frac{201}{24} \] \[ \frac{19}{6} = \frac{19 \times 4}{6 \times 4} = \frac{76}{24} \] Now, we subtract the days spent on her science project from the days spent on her English paper and math test combined: \[ \frac{201}{24} - \frac{76}{24} = \frac{201 - 76}{24} = \frac{125}{24} \] To express this in mixed number form: \[ 125 \div 24 = 5 \quad \text{remainder } 5 \] Thus, \( \frac{125}{24} = 5 \frac{5}{24} \) So, Suzy spent \( 5 \frac{5}{24} \) more days on her English paper and math test combined than on her science project.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad