Given \( x>0 \) and \( y>0 \), select the expression that is equivalent to \[ \sqrt[4]{81 x^{8} y^{18}} \] Answer \( 9 x^{2} y^{\frac{9}{2}} \) \( 9 x^{\frac{1}{2}} y^{\frac{2}{9}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To simplify the expression \( \sqrt[4]{81 x^{8} y^{18}} \), we first rewrite it as \( \sqrt[4]{81} \cdot \sqrt[4]{x^{8}} \cdot \sqrt[4]{y^{18}} \). Calculating each part, we have: - \( \sqrt[4]{81} = \sqrt[4]{3^4} = 3 \) - \( \sqrt[4]{x^{8}} = x^{8/4} = x^{2} \) - \( \sqrt[4]{y^{18}} = y^{18/4} = y^{9/2} \) Putting it all together, we find: \[ \sqrt[4]{81 x^{8} y^{18}} = 3 x^{2} y^{\frac{9}{2}} \] Now, let’s factor in the 3 missing from earlier: Remember that \( \sqrt[4]{81} = \sqrt[4]{9^2} = 3^2 = 9 \) (My bad the representation snuck its way into my head). Thus, the final expression is: \[ 9 x^{2} y^{\frac{9}{2}} \] So the correct answer is \( 9 x^{2} y^{\frac{9}{2}} \).