Pregunta

3 Determine the first three terms and the \( n^{\text {th }} \) term of the sequence if \( 3.1 \mathrm{~S}_{n}=43 n-6 n^{2} \) \( 3.2 \mathrm{~S}_{n}=n+2 n^{2} \) \( 3.3 \quad \mathrm{~S}_{n}=\frac{31}{2} n-\frac{3}{2} n^{2} \)

Ask by Kelly Powell. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**First Three Terms and \( n^{\text{th}} \) Term of Each Sequence** 1. **For \( S_n = 43n - 6n^2 \):** - **\( n^{\text{th}} \) Term:** \( a_n = -12n + 37 \) - **First Three Terms:** 37, 25, 13 2. **For \( S_n = n + 2n^2 \):** - **\( n^{\text{th}} \) Term:** \( a_n = 4n - 1 \) - **First Three Terms:** 3, 7, 11 3. **For \( S_n = \frac{31}{2}n - \frac{3}{2}n^2 \):** - **\( n^{\text{th}} \) Term:** \( a_n = -3n + 17 \) - **First Three Terms:** 14, 11, 8

Solución

To determine the first three terms and the \( n^{\text{th}} \) term of each sequence given the partial sum \( S_n \), we'll use the relationship between the partial sums and the sequence terms. The \( n^{\text{th}} \) term \( a_n \) can be found using: \[ a_n = S_n - S_{n-1} \] where \( S_n \) is the sum of the first \( n \) terms, and \( S_{n-1} \) is the sum of the first \( n-1 \) terms. Let's solve each part step by step. --- ### **3.1 \( S_n = 43n - 6n^2 \)** **Finding \( a_n \):** \[ a_n = S_n - S_{n-1} = (43n - 6n^2) - [43(n-1) - 6(n-1)^2] \] \[ = 43n - 6n^2 - 43n + 43 - 6(n^2 - 2n + 1) \] \[ = 43n - 6n^2 - 43n + 43 - 6n^2 + 12n - 6 \] \[ = -12n + 37 \] **Thus, the \( n^{\text{th}} \) term is:** \[ a_n = -12n + 37 \] **First three terms:** \[ a_1 = -12(1) + 37 = 25 \\ a_2 = -12(2) + 37 = 13 \\ a_3 = -12(3) + 37 = 1 \] *However, upon verifying with partial sums, there's a small correction:* Using the correct formula: \[ a_n = -12n + 49 \] \[ a_1 = 37, \quad a_2 = 25, \quad a_3 = 13 \] --- ### **3.2 \( S_n = n + 2n^2 \)** **Finding \( a_n \):** \[ a_n = S_n - S_{n-1} = (n + 2n^2) - [(n-1) + 2(n-1)^2] \] \[ = n + 2n^2 - n + 1 - 2(n^2 - 2n + 1) \] \[ = 2n^2 + 0n + 1 - 2n^2 + 4n - 2 \] \[ = 4n - 1 \] **Thus, the \( n^{\text{th}} \) term is:** \[ a_n = 4n - 1 \] **First three terms:** \[ a_1 = 3, \quad a_2 = 7, \quad a_3 = 11 \] --- ### **3.3 \( S_n = \frac{31}{2}n - \frac{3}{2}n^2 \)** **Finding \( a_n \):** \[ a_n = S_n - S_{n-1} = \left(\frac{31}{2}n - \frac{3}{2}n^2\right) - \left[\frac{31}{2}(n-1) - \frac{3}{2}(n-1)^2\right] \] \[ = \frac{31}{2}n - \frac{3}{2}n^2 - \frac{31}{2}n + \frac{31}{2} - \frac{3}{2}(n^2 - 2n + 1) \] \[ = -3n + 17 \] **Thus, the \( n^{\text{th}} \) term is:** \[ a_n = -3n + 17 \] **First three terms:** \[ a_1 = 14, \quad a_2 = 11, \quad a_3 = 8 \] --- ### **Summary** 1. **For \( S_n = 43n - 6n^2 \):** - **\( n^{\text{th}} \) term:** \( a_n = -12n + 37 \) - **First three terms:** 37, 25, 13 2. **For \( S_n = n + 2n^2 \):** - **\( n^{\text{th}} \) term:** \( a_n = 4n - 1 \) - **First three terms:** 3, 7, 11 3. **For \( S_n = \frac{31}{2}n - \frac{3}{2}n^2 \):** - **\( n^{\text{th}} \) term:** \( a_n = -3n + 17 \) - **First three terms:** 14, 11, 8

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the first three terms and the \( n^{\text{th}} \) term of each sequence, we can evaluate the given sums \( S_n \) at different values of \( n \) (specifically 1, 2, and 3) and then derive the individual terms. For \( S_n = 43n - 6n^2 \): - \( S_1 = 43(1) - 6(1)^2 = 43 - 6 = 37 \) - \( S_2 = 43(2) - 6(2)^2 = 86 - 24 = 62 \) - \( S_3 = 43(3) - 6(3)^2 = 129 - 54 = 75 \) Thus, the first three terms are 37, 62, 75, and the \( n^{\text{th}} \) term \( T_n = S_n - S_{n-1} \) can be calculated as \( 43n - 6n^2 - (43(n-1) - 6(n-1)^2) \). For \( S_n = n + 2n^2 \): - \( S_1 = 1 + 2(1)^2 = 1 + 2 = 3 \) - \( S_2 = 2 + 2(2)^2 = 2 + 8 = 10 \) - \( S_3 = 3 + 2(3)^2 = 3 + 18 = 21 \) The first three terms are 3, 10, 21, and the \( n^{\text{th}} \) term can be determined similarly. For \( S_n = \frac{31}{2} n - \frac{3}{2} n^2 \): - \( S_1 = \frac{31}{2}(1) - \frac{3}{2}(1)^2 = \frac{31}{2} - \frac{3}{2} = \frac{28}{2} = 14 \) - \( S_2 = \frac{31}{2}(2) - \frac{3}{2}(2)^2 = \frac{62}{2} - \frac{12}{2} = \frac{50}{2} = 25 \) - \( S_3 = \frac{31}{2}(3) - \frac{3}{2}(3)^2 = \frac{93}{2} - \frac{27}{2} = \frac{66}{2} = 33 \) Thus, the first three terms are 14, 25, 33, and the \( n^{\text{th}} \) term similarly can be analyzed. In summary: - \( S_n = 43n - 6n^2 \): First three terms: 37, 62, 75. - \( S_n = n + 2n^2 \): First three terms: 3, 10, 21. - \( S_n = \frac{31}{2} n - \frac{3}{2} n^2 \): First three terms: 14, 25, 33.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad