Pregunta
upstudy study bank question image url

Determine whether the graphs of the given pair of lines are parallel. \( \begin{array}{l}\begin{array}{l}\text { HW Score: } 435 \% \\ y-2=y\end{array} \\ \text { Note that two nonvertical lines are parallel if they have the same slope(s) and different } y \text {-intercept(s). }\end{array} \) To find the slopes of both lines, the equations of the lines need to be rewritten in what form? slope-intercept form standard form

Ask by Hanson Park. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To determine if the lines are parallel, rewrite both equations in slope-intercept form.

Solución

To determine whether two nonvertical lines are parallel, you need to compare their slopes. The most straightforward way to identify the slope of a line is by rewriting its equation in **slope-intercept form**. **Slope-Intercept Form:** \[ y = mx + b \] - **\( m \)** represents the slope of the line. - **\( b \)** represents the y-intercept. By rewriting both equations in this form, you can easily identify and compare the slopes (\( m \)) of the two lines. If both lines have the same slope but different y-intercepts (\( b \)), they are parallel. **Example:** Suppose you have the following two equations: 1. \( y - 2 = 3x \) Rewrite in slope-intercept form: \( y = 3x + 2 \) Here, the slope \( m = 3 \). 2. \( y = 3x + 5 \) This equation is already in slope-intercept form. Here, the slope \( m = 3 \). Since both lines have the same slope (\( 3 \)) but different y-intercepts (\( 2 \) and \( 5 \)), they are parallel. **Conclusion:** To find and compare the slopes of both lines effectively, **rewrite the equations in slope-intercept form**. **Answer:** They should be rewritten in **slope-intercept form** to determine the slopes.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine if the lines are parallel, we need to rewrite their equations in slope-intercept form, which is \(y = mx + b\), where \(m\) represents the slope. For the given equation \(y - 2 = y\), we can first rearrange it to isolate \(y\). If both lines have the same slope \(m\) but different y-intercepts \(b\), we can conclude they are parallel. When comparing two lines, it's also essential to ensure that they truly represent distinct equations. If we manipulate one of them to find an equivalent form or check its consistency, we can confirm if the slopes truly match. In our case, verifying the slopes from the manipulated equations will be the key!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad