Pregunta
upstudy study bank question image url

A barrel shaped like a cylinder is laid on its side and rolled up a ramp. The barrel has a circular base that is 0.5 m in diameter. If the barrel turns 38 times in being rolled up the ramp, how long is the ramp? Use the value 3,14 for \( \pi \). Round your answer to the nearest tenth. Do not round any intermediate steps. m

Ask by Vargas Mccoy. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The ramp is approximately 59.7 meters long.

Solución

To determine the length of the ramp, we can use the relationship between the number of rotations of the barrel and the distance it travels. 1. **Calculate the Circumference of the Barrel:** - The diameter of the barrel is \(0.5 \, \text{m}\), so the radius \(r\) is \(0.25 \, \text{m}\). - The circumference \(C\) of the barrel is given by: \[ C = \pi \times \text{diameter} = 3.14 \times 0.5 \, \text{m} = 1.57 \, \text{m} \] 2. **Determine the Total Distance Rolled:** - For each full rotation, the barrel travels a distance equal to its circumference. - Therefore, for \(38\) rotations, the total distance \(D\) is: \[ D = 38 \times C = 38 \times 1.57 \, \text{m} = 59.66 \, \text{m} \] 3. **Round the Answer:** - Rounding \(59.66 \, \text{m}\) to the nearest tenth gives: \[ D \approx 59.7 \, \text{m} \] **Final Answer:** The ramp is approximately **59.7 m** long.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the length of the ramp, we first need to calculate the circumference of the barrel. The formula for the circumference (C) of a circle is: \[ C = \pi \times d \] where \( d \) is the diameter. Given that the diameter of the barrel is 0.5 m, we can substitute it in: \[ C = 3.14 \times 0.5 = 1.57 \text{ m} \] Now, since the barrel makes 38 complete turns while rolling up the ramp, the total distance rolled (which is the length of the ramp) is calculated by multiplying the circumference by the number of turns: \[ \text{Length of the ramp} = C \times \text{Number of turns} \] Substituting the values we have: \[ \text{Length of the ramp} = 1.57 \text{ m} \times 38 = 59.66 \text{ m} \] Rounding to the nearest tenth, the length of the ramp is: \[ \text{Length of the ramp} \approx 59.7 \text{ m} \] So, the ramp is approximately 59.7 m long.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad