Pregunta
Simplify fully wilhout using a caleulator. Your answer must be free of negative exponents and irrational denominators. \( 2.1 .1 \quad 64^{-\frac{2}{3}} \) \( 2.1 .2 \frac{3^{2 n+2}-9^{n-1}}{2.3^{2 n+1}} \) \( 2.1 .3 \quad \frac{(3-\sqrt{3})^{2}}{\sqrt{3} \cdot \sqrt{6}} \)
Ask by Pollard Curry. in South Africa
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\(64^{-\frac{2}{3}} = 0.0625\)
\(\frac{3^{2n+2}-9^{n-1}}{2*3^{2n+1}} = 1\frac{13}{27} \approx 1.4881\)
\(\frac{(3-\sqrt{3})^{2}}{\sqrt{3} \cdot \sqrt{6}} = 2\sqrt{2} - \sqrt{6}\)
Solución
Calculate or simplify the expression \( 64^{-\frac{2}{3}} \).
Calculate the value by following steps:
- step0: Calculate:
\(64^{-\frac{2}{3}}\)
- step1: Express with a positive exponent:
\(\frac{1}{64^{\frac{2}{3}}}\)
- step2: Evaluate the power:
\(\frac{1}{16}\)
Calculate or simplify the expression \( \frac{3^{2n+2}-9^{n-1}}{2*3^{2n+1}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{3^{2n+2}-9^{n-1}}{2\times 3^{2n+1}}\)
- step1: Subtract the terms:
\(\frac{80\times 3^{2n-2}}{2\times 3^{2n+1}}\)
- step2: Reduce the fraction:
\(\frac{40}{3^{3}}\)
- step3: Evaluate the power:
\(\frac{40}{27}\)
Calculate or simplify the expression \( \frac{(3-\sqrt{3})^{2}}{\sqrt{3} \cdot \sqrt{6}} \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(3-\sqrt{3}\right)^{2}}{\sqrt{3}\times \sqrt{6}}\)
- step1: Multiply the numbers:
\(\frac{\left(3-\sqrt{3}\right)^{2}}{3\sqrt{2}}\)
- step2: Evaluate the power:
\(\frac{12-6\sqrt{3}}{3\sqrt{2}}\)
- step3: Reduce the fraction:
\(\frac{4-2\sqrt{3}}{\sqrt{2}}\)
- step4: Multiply by the Conjugate:
\(\frac{\left(4-2\sqrt{3}\right)\sqrt{2}}{\sqrt{2}\times \sqrt{2}}\)
- step5: Multiply the numbers:
\(\frac{4\sqrt{2}-2\sqrt{6}}{\sqrt{2}\times \sqrt{2}}\)
- step6: Multiply the numbers:
\(\frac{4\sqrt{2}-2\sqrt{6}}{2}\)
- step7: Rewrite the expression:
\(\frac{2\left(2\sqrt{2}-\sqrt{6}\right)}{2}\)
- step8: Reduce the fraction:
\(2\sqrt{2}-\sqrt{6}\)
The simplified forms of the given expressions are:
1. \(64^{-\frac{2}{3}} = \frac{1}{16} = 0.0625\)
2. \(\frac{3^{2n+2}-9^{n-1}}{2*3^{2n+1}} = \frac{40}{27} = 1\frac{13}{27} = 1.4881\)
3. \(\frac{(3-\sqrt{3})^{2}}{\sqrt{3} \cdot \sqrt{6}} = 2\sqrt{2}-\sqrt{6}\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium