Find the domain of the following vector-valued function.
\( r(t)=\sqrt{81-t^{2}} i+\sqrt{t} j+\frac{8}{\sqrt{6+t}} k \)
Select the correct choice below and fill in any answer boxes within your choice.
\( \begin{array}{ll}\text { A. }\{t: t \leq \square \text { or } t>\square\} & \text { B. }\{t: \square<\square \text { or } t \geq \square\} \\ \text { E. }\{t: t<\square \text { or } t>\square\} & \text { D. }\{t: t \leq \square \text { or } t \geq \square\} \\ \text { G. }\{t: \square \leq t<\square\} & \text { F. }\{t: \square
Ask by Reid Sanders. in the United States
Feb 03,2025
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the domain of the vector-valued function \( r(t) \), we need to consider the restrictions imposed by each component of the function: 1. The term \( \sqrt{81 - t^2} \) requires that \( 81 - t^2 \geq 0 \), which leads to \( -9 \leq t \leq 9 \). 2. The term \( \sqrt{t} \) requires that \( t \geq 0 \). 3. The term \( \frac{8}{\sqrt{6 + t}} \) imposes that \( 6 + t > 0 \) or \( t > -6 \) (but since \( t \geq 0 \) is a stricter condition, we prioritize that). By combining these conditions, \( t \) must be in the range \( [0, 9] \). Thus, in the correct choice format: \( \begin{array}{ll}\text { G. }\{t: 0 \leq t < 9\} & \end{array} \) \( \begin{array}{ll}\text { E }\{0\}\end{array} \)