Pregunta
upstudy study bank question image url

3. \( \frac{1}{3}+\frac{5}{6} \div \frac{5}{9} \) 4. \( -\frac{8}{9}+\frac{1}{9} \div\left(-\frac{1}{4}\right) \) 5. \( \frac{7}{8} \times\left(-\frac{7}{9}-\frac{1}{9}\right) \) 6. \( \frac{1}{3} \times\left(\frac{5}{8}+\frac{3}{4}\right) \) \( = \) \( = \) 7. \( \frac{4}{9}-\frac{2}{9} \div \frac{1}{3}+\left(-\frac{2}{3}\right) \) 8. \( \frac{3}{5}+\frac{7}{15} \div \frac{4}{5}-\left(-1 \frac{1}{5}\right) \)

Ask by Pearson Watson. in Malaysia
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified answers to the fraction problems: 1. **Problem 3:** \(\frac{11}{6}\) or \(1 \frac{5}{6}\) 2. **Problem 4:** \(-\frac{4}{3}\) 3. **Problem 5:** \(-\frac{7}{9}\) 4. **Problem 6:** \(\frac{11}{24}\) 5. **Problem 7:** \(-\frac{8}{9}\) 6. **Problem 8:** \(\frac{143}{60}\) or \(2 \frac{23}{60}\)

Solución

Sure! Let's solve each of the given fraction problems step by step. --- ### **Problem 3** \[ \frac{1}{3} + \frac{5}{6} \div \frac{5}{9} \] **Step 1: Perform the Division** \[ \frac{5}{6} \div \frac{5}{9} = \frac{5}{6} \times \frac{9}{5} = \frac{45}{30} = \frac{3}{2} \] **Step 2: Add the Result to \(\frac{1}{3}\)** \[ \frac{1}{3} + \frac{3}{2} = \frac{2}{6} + \frac{9}{6} = \frac{11}{6} \text{ or } 1 \frac{5}{6} \] **Answer:** \(\frac{11}{6}\) or \(1 \frac{5}{6}\) --- ### **Problem 4** \[ -\frac{8}{9} + \frac{1}{9} \div \left(-\frac{1}{4}\right) \] **Step 1: Perform the Division** \[ \frac{1}{9} \div \left(-\frac{1}{4}\right) = \frac{1}{9} \times (-4) = -\frac{4}{9} \] **Step 2: Add the Results** \[ -\frac{8}{9} + \left(-\frac{4}{9}\right) = -\frac{12}{9} = -\frac{4}{3} \] **Answer:** \(-\frac{4}{3}\) --- ### **Problem 5** \[ \frac{7}{8} \times \left(-\frac{7}{9} - \frac{1}{9}\right) \] **Step 1: Simplify Inside the Parentheses** \[ -\frac{7}{9} - \frac{1}{9} = -\frac{8}{9} \] **Step 2: Multiply** \[ \frac{7}{8} \times \left(-\frac{8}{9}\right) = -\frac{56}{72} = -\frac{7}{9} \] **Answer:** \(-\frac{7}{9}\) --- ### **Problem 6** \[ \frac{1}{3} \times \left(\frac{5}{8} + \frac{3}{4}\right) \] **Step 1: Simplify Inside the Parentheses** Convert \(\frac{3}{4}\) to eighths: \[ \frac{3}{4} = \frac{6}{8} \] Add the fractions: \[ \frac{5}{8} + \frac{6}{8} = \frac{11}{8} \] **Step 2: Multiply** \[ \frac{1}{3} \times \frac{11}{8} = \frac{11}{24} \] **Answer:** \(\frac{11}{24}\) --- ### **Problem 7** \[ \frac{4}{9} - \frac{2}{9} \div \frac{1}{3} + \left(-\frac{2}{3}\right) \] **Step 1: Perform the Division** \[ \frac{2}{9} \div \frac{1}{3} = \frac{2}{9} \times 3 = \frac{6}{9} = \frac{2}{3} \] **Step 2: Substitute Back Into the Expression** \[ \frac{4}{9} - \frac{2}{3} + \left(-\frac{2}{3}\right) \] Convert all fractions to ninths: \[ \frac{4}{9} - \frac{6}{9} - \frac{6}{9} = \frac{4 - 6 - 6}{9} = \frac{-8}{9} \] **Answer:** \(-\frac{8}{9}\) --- ### **Problem 8** \[ \frac{3}{5} + \frac{7}{15} \div \frac{4}{5} - \left(-1 \frac{1}{5}\right) \] **Step 1: Perform the Division** \[ \frac{7}{15} \div \frac{4}{5} = \frac{7}{15} \times \frac{5}{4} = \frac{35}{60} = \frac{7}{12} \] **Step 2: Simplify the Negative Term** \[ -\left(-1 \frac{1}{5}\right) = +1 \frac{1}{5} = \frac{6}{5} \] **Step 3: Combine All Terms** \[ \frac{3}{5} + \frac{7}{12} + \frac{6}{5} \] Find a common denominator (60): \[ \frac{3}{5} = \frac{36}{60}, \quad \frac{7}{12} = \frac{35}{60}, \quad \frac{6}{5} = \frac{72}{60} \] Add them together: \[ \frac{36}{60} + \frac{35}{60} + \frac{72}{60} = \frac{143}{60} = 2 \frac{23}{60} \] **Answer:** \(\frac{143}{60}\) or \(2 \frac{23}{60}\) --- If you have any more problems or need further clarification, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To understand how these operations work, it helps to know that division of fractions involves multiplying by the reciprocal. For example, dividing \( \frac{5}{6} \) by \( \frac{5}{9} \) is the same as multiplying \( \frac{5}{6} \) by \( \frac{9}{5} \). This nifty trick simplifies fractions effectively! When working with negative fractions, a common mistake is miscalculating the signs, which can lead to incorrect answers. Always remember that multiplying or dividing two negatives gives a positive, while adding or subtracting a negative is akin to taking away. So, care with signs will save you from having a headache at the end!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad