5. \( 4 \frac{6}{8}+1 \frac{2}{5}= \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve \( 4 \frac{6}{8} + 1 \frac{2}{5} \), first convert the mixed numbers to improper fractions. For \( 4 \frac{6}{8} \): - \( 4 \times 8 + 6 = 32 + 6 = 38 \) - So, \( 4 \frac{6}{8} = \frac{38}{8} \). For \( 1 \frac{2}{5} \): - \( 1 \times 5 + 2 = 5 + 2 = 7 \) - So, \( 1 \frac{2}{5} = \frac{7}{5} \). Now, find a common denominator to add \( \frac{38}{8} \) and \( \frac{7}{5} \). The least common multiple of 8 and 5 is 40. Convert \( \frac{38}{8} \) to a fraction with a denominator of 40: - \( \frac{38 \times 5}{8 \times 5} = \frac{190}{40} \). Convert \( \frac{7}{5} \) to a fraction with a denominator of 40: - \( \frac{7 \times 8}{5 \times 8} = \frac{56}{40} \). Now, add the two fractions: - \( \frac{190}{40} + \frac{56}{40} = \frac{246}{40} \). To simplify, divide both the numerator and the denominator by their greatest common divisor, which is 2: - \( \frac{246 \div 2}{40 \div 2} = \frac{123}{20} \). This can be converted back to a mixed number: - \( 123 \div 20 = 6 \) remainder \( 3 \), so \( 6 \frac{3}{20} \). Thus, \( 4 \frac{6}{8} + 1 \frac{2}{5} = 6 \frac{3}{20} \).