Pregunta
upstudy study bank question image url

A video game costs \( \$ 60 \) today. If the inflation rate is \( 4.75 \% \) and is compounded continuously how much will this same video game cost in 5 years?

Ask by Graham Campos. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The video game will cost approximately \$76.08 in 5 years.

Solución

To find the cost of the video game in 5 years with continuous compounding, we can use the formula for continuous compounding: \[ A = P \times e^{r \times t} \] Where: - \( A \) is the amount after time \( t \), - \( P \) is the principal amount (initial cost of the video game), - \( r \) is the annual inflation rate, - \( t \) is the time in years. Given: - Initial cost of the video game, \( P = \$60 \), - Inflation rate, \( r = 4.75\% = 0.0475 \), - Time, \( t = 5 \) years. Substitute the given values into the formula to find the cost of the video game in 5 years. Calculate the value by following steps: - step0: Calculate: \(60e^{0.0475\times 5}\) - step1: Multiply the numbers: \(60e^{0.2375}\) - step2: Convert the expressions: \(60e^{\frac{19}{80}}\) - step3: Rewrite the expression: \(60\sqrt[80]{e^{19}}\) The cost of the video game in 5 years with continuous compounding is approximately $76.08.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the future cost of the video game due to inflation, we can use the continuous compounding formula, which is given by: \[ A = Pe^{rt} \] Where: - \( A \) is the amount of money accumulated after time \( t \). - \( P \) is the principal amount (the initial cost of the game, which is \( \$60 \)). - \( e \) is the base of the natural logarithm (approximately \( 2.71828 \)). - \( r \) is the annual interest rate (inflation rate in this case, which is \( 0.0475 \)). - \( t \) is the time in years (which is \( 5 \)). Plugging in the values: \[ A = 60e^{0.0475 \times 5} \] First, calculate \( 0.0475 \times 5 \): \[ 0.0475 \times 5 = 0.2375 \] Now calculate \( e^{0.2375} \): \[ e^{0.2375} \approx 1.2684 \] (using a calculator or mathematical software) Now plug it back into the equation: \[ A \approx 60 \times 1.2684 \approx 76.11 \] So, the video game will cost approximately \( \$76.11 \) in 5 years when accounting for continuous inflation at a rate of \( 4.75\% \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad