Solve the system by substitution. \[ \begin{aligned}-10 x+2 y & =-32 \\ 9 x & =y\end{aligned} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the system by substitution, we can start by substituting \(y\) from the second equation into the first equation. From the second equation, we have: \[ y = 9x \] Now, substitute \(y\) in the first equation: \[ -10x + 2(9x) = -32 \] This simplifies to: \[ -10x + 18x = -32 \] \[ 8x = -32 \] Next, divide by 8: \[ x = -4 \] Now that we have \(x\), substitute it back into the equation for \(y\): \[ y = 9(-4) = -36 \] Thus, the solution to the system of equations is: \[ (x, y) = (-4, -36) \]