Pregunta
upstudy study bank question image url

1. \( 25 a^{2}-16 \) 3. \( 2 a^{2}+2 b^{2} \) 5. \( x^{2} y^{2}-1 \) 7. \( 28 x^{3}-63 x b^{2} \) 9. \( (2 x+3 y)^{2}-9 \) 11. \( 4 x^{2}-(3 x-2 y)^{2} \) 13. \( 25 a^{2}(a-3 b)+9(3 b-a) \)

Ask by Powell Stuart. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. \( 25 a^{2} - 16 = (5a - 4)(5a + 4) \) 2. \( 2 a^{2} + 2 b^{2} = 2(a^{2} + b^{2}) \) 3. \( x^{2} y^{2} - 1 = (xy - 1)(xy + 1) \) 4. \( 28 x^{3} - 63 x b^{2} = 7x(2x - 3b)(2x + 3b) \) 5. \( (2x + 3y)^{2} - 9 = (2x + 3y - 3)(2x + 3y + 3) \) 6. \( 4x^{2} - (3x - 2y)^{2} = (2y - x)(5x - 2y) \) 7. \( 25 a^{2}(a - 3 b) + 9(3 b - a) = (a - 3b)(5a - 3)(5a + 3) \)

Solución

Sure, let's factor each of the given expressions step by step. --- ### **1. \( 25 a^{2} - 16 \)** This is a **difference of squares**, which can be factored using the formula: \[ A^2 - B^2 = (A - B)(A + B) \] Here, \( A = 5a \) and \( B = 4 \). **Factored Form:** \[ 25 a^{2} - 16 = (5a - 4)(5a + 4) \] --- ### **3. \( 2 a^{2} + 2 b^{2} \)** First, factor out the common factor of **2**: \[ 2 a^{2} + 2 b^{2} = 2(a^{2} + b^{2}) \] The expression \( a^{2} + b^{2} \) does not factor further over the real numbers. **Factored Form:** \[ 2 a^{2} + 2 b^{2} = 2(a^{2} + b^{2}) \] --- ### **5. \( x^{2} y^{2} - 1 \)** This is also a **difference of squares**. Let \( A = xy \) and \( B = 1 \). **Factored Form:** \[ x^{2} y^{2} - 1 = (xy - 1)(xy + 1) \] --- ### **7. \( 28 x^{3} - 63 x b^{2} \)** First, factor out the **greatest common factor (GCF)**, which is \( 7x \): \[ 28 x^{3} - 63 x b^{2} = 7x(4x^{2} - 9b^{2}) \] Notice that \( 4x^{2} - 9b^{2} \) is a **difference of squares** where \( A = 2x \) and \( B = 3b \). **Fully Factored Form:** \[ 28 x^{3} - 63 x b^{2} = 7x(2x - 3b)(2x + 3b) \] --- ### **9. \( (2x + 3y)^{2} - 9 \)** Recognize this as a **difference of squares**, with \( A = (2x + 3y) \) and \( B = 3 \). **Factored Form:** \[ (2x + 3y)^{2} - 9 = (2x + 3y - 3)(2x + 3y + 3) \] --- ### **11. \( 4x^{2} - (3x - 2y)^{2} \)** This is a **difference of squares**, where \( A = 2x \) and \( B = (3x - 2y) \). **Factored Form:** \[ 4x^{2} - (3x - 2y)^{2} = (2x - (3x - 2y))(2x + (3x - 2y)) \] Simplify the factors: \[ = (-x + 2y)(5x - 2y) = (2y - x)(5x - 2y) \] --- ### **13. \( 25 a^{2}(a - 3 b) + 9(3 b - a) \)** First, rewrite the expression to identify a common factor: \[ 25 a^{2}(a - 3b) + 9(3b - a) = 25a^{2}(a - 3b) - 9(a - 3b) \] Factor out the common term \( (a - 3b) \): \[ = (a - 3b)(25a^{2} - 9) \] Notice that \( 25a^{2} - 9 \) is a **difference of squares**, where \( A = 5a \) and \( B = 3 \). **Fully Factored Form:** \[ 25 a^{2}(a - 3 b) + 9(3 b - a) = (a - 3b)(5a - 3)(5a + 3) \] --- Feel free to ask if you need further explanations or assistance with these problems!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The expression \( 25 a^{2}-16 \) is a classic example of a difference of squares, which can be factored as \( (5a - 4)(5a + 4) \). This technique comes in handy for simplifying many expressions and is often encountered in algebraic manipulations. In real life, factoring polynomials is vital in various scenarios, including computer graphics, where polynomial functions are used to model curves and surfaces. Factorization helps in optimizing calculations and rendering shapes accurately, making it a fascinating intersection of math and technology.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad