1. \( (x+3)(x-3)= \) 2. \( (3 x+5 y)(3 x-5 y)= \) 3. \( \left(6 x^{5}+1\right)\left(6 x^{5}-1\right)= \) 4. \( \left(9 a b^{4}-c^{7}\right)\left(9 a b^{4}+c^{7}\right)= \) 5. \( \left(\frac{3}{5} m+\frac{1}{2}\right)\left(\frac{3}{5} m-\frac{1}{2}\right)= \) 6. \( \left(\frac{7}{6} x^{3}+\frac{3}{2}\right)\left(\frac{7}{6} x^{3}-\frac{3}{2}\right)= \) 7. \( \left(\frac{1}{3} x y+z^{6}\right)\left(\frac{1}{3} x y-z^{6}\right)= \) 8. \( \left(3 x^{2}+\frac{1}{10}\right)\left(-3 x^{2}+\frac{1}{10}\right)= \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
The expressions you've got there represent a classic math concept: the difference of squares. This nifty mathematical formulation helps simplify calculations by turning a product of a sum and a difference into a difference of squares. The result is often a quadratic or a higher-degree polynomial that can be quite easier to work with than the original expression. For example, \( (a + b)(a - b) = a^2 - b^2 \). This means when you see something in the form of \( (x + n)(x - n) \) or \( (3x + m)(3x - m) \), you can straight-up compute \( a^2 - b^2 \) where \( a \) and \( b \) are your expressions. It’s like math’s simplified cheat code for squaring things away quickly!