Pregunta
upstudy study bank question image url

Question 1 True or false: \( x-1 \) is a factor of \( 6 x^{3}-5 x^{2}-8 x+3 \) True False

Ask by Spencer Mann. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x - 1 \) is not a factor of \( 6x^{3} - 5x^{2} - 8x + 3 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To determine whether \( x-1 \) is a factor of \( 6x^3 - 5x^2 - 8x + 3 \), you can apply the Factor Theorem. According to the theorem, if \( x-c \) is a factor of a polynomial, then substituting \( c \) into the polynomial should yield zero. In this case, substitute \( x = 1 \): \( 6(1)^3 - 5(1)^2 - 8(1) + 3 = 6 - 5 - 8 + 3 = -4 \). Since the result is not zero, \( x-1 \) is **not** a factor. Hence, the answer is **False**. If you enjoy polynomial puzzles, you'll love diving into synthetic division! It's a slick method for testing factors that combines fun and efficiency. When you divide the polynomial by your suspected factor using synthetic division, if the remainder is zero, you've got yourself a winner! To further untangle polynomial mysteries, consider exploring advanced algebra textbooks or online resources focused on polynomial functions and their properties. They often present engaging explanations and visual aids that make complex topics much easier to tackle!

preguntas relacionadas

PHIẾU: PHÉP CỘNG, TRỪ PHÂN SỐ HỌ VÀ TÊN:.............................LỚP 8A4 Bài 1. Thực hiện phép tính: a) \( \frac{x-5}{5}+\frac{1-x}{5} \) b) \( \frac{x-y}{8}+\frac{2 y}{8} \) c) \( \frac{x^{2}+1}{x-2}-\frac{1-2 x}{x-2} \) d) \( \frac{4 x+1}{3}-\frac{x-2}{3} \) e) \( \frac{4 x-1}{3 x^{2} y}-\frac{7 x-1}{3 x^{2} y} \) f) \( \frac{3 x+2 y}{x-y}-\frac{2 x+3 y}{x-y} \) d) \( \frac{5 x y^{2}-x^{2} y}{3 x y}-\frac{4 x y^{2}+x^{2} y}{3 x y} \) e) \( \frac{x+1}{a-b}+\frac{x-1}{a-b}-\frac{x+3}{a-b} \) f) \( \frac{5 x y-4 y}{2 x^{2} y^{3}}+\frac{3 x y+4 y}{2 x^{2} y^{3}} \) h) \( \frac{x^{2}+4}{x-2}+\frac{4 x}{2-x} \) i) \( \frac{2 x^{2}-x y}{x-y}+\frac{x y+y^{2}}{y-x}-\frac{2 y^{2}-x^{2}}{x-y} \) Bài 2: Thực hiện phép tính: a) \( \frac{2 x+4}{10}+\frac{2-x}{15} \) b) \( \frac{x^{2}}{x^{2}+3 x}+\frac{3}{x+3}+\frac{3}{x} \) c) \( \frac{2}{x+y}-\frac{1}{y-x}+\frac{-3 x}{x^{2}-y^{2}} \) d) \( \frac{4}{x+2}+\frac{2}{x-2}+\frac{5 x-6}{4-x^{2}} \); e) \( \frac{1-3 x}{2 x}+\frac{3 x-2}{2 x-1}+\frac{3 x-2}{2 x-4 x^{2}} \); f) \( \frac{x^{2}+2}{x^{3}-1}+\frac{2}{x^{2}+x+1}+\frac{1}{1-x} \) Bài 3. Làm tính trừ các phân thức sau: a) \( \frac{4 x+1}{3}-\frac{x-2}{3} \) b) \( \frac{4 x-1}{3 x^{2} y}-\frac{7 x-1}{3 x^{2} y} \) c) \( \frac{3 x+2 y}{x-y}-\frac{2 x+3 y}{x-y} \) Bài 4. Làm các phép tính a) \( \frac{x y-1}{2 x-y}-\frac{1-2 x^{2}}{y-2 x} \) b) \( \frac{3 x y^{2}+x^{2} y}{x^{2} y-x y^{2}}-\frac{3 x^{2} y+x y^{2}}{x y(x-y)} \) c) \( \frac{x+9}{x^{2}-9}-\frac{3}{x^{2}+3 x} \) Bài 5. Thực hiện phép tính a) \( \frac{5 x^{2}}{6 x-6 y}-\frac{2 x^{2}}{3 y-3 x} \) b) \( \frac{y}{x y-5 x^{2}}-\frac{25 x-15 y}{25 x^{2}-y^{2}} \) c) \( \frac{1}{2 x-3}-\frac{2}{2 x+3}-\frac{6}{4 x^{2}-9} \) Bài 6. Rút gọn rồi tính giá trị của biểu thức a) \( \frac{x+1}{x-1}-\frac{4 x}{x^{2}-1} \) với \( x=-2 \) b) \( \frac{1}{x y-x^{2}}-\frac{1}{y^{2}-x y} \) với \( x=-5 ; y=\frac{-1}{5} \) Bài 7. Chứng minh biểu thức sau không phụ thuộc vào x : \[ A=\frac{11 x}{2 x-3}-\frac{x-18}{3-2 x} \quad B=\frac{1}{x+1}-\frac{2 x}{x-1}+\frac{x+3}{x^{2}-1} \] Bài 8. Chứng minh biểu thức sau không phụ thuộc vào \( \mathrm{x}, \mathrm{y} \) : \[ D=\frac{2 x+1}{x-2 y}-\frac{5 y+2}{x-2 y}-\frac{y+1}{2 y-x} \quad K=\frac{x+y}{x}-\frac{x}{x-y}+\frac{y^{2}}{x^{2}-x y} \]
Álgebra Vietnam Jan 24, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad