Pregunta
upstudy study bank question image url

\begin{tabular}{l} Question 3 \\ Select the solution to the following system of equations: \\ \( \begin{array}{l}4 x+2 y=4 \\ 3 x-y=-7\end{array} \) \\ \( \begin{array}{l}x=1 \\ y=-4 \\ y=-4\end{array} \) \\ \( \begin{array}{l}x=-4 \\ y=1\end{array} \) \\ \( \begin{array}{l}x=-1 \\ y=4\end{array} \) \\ \hline\end{tabular}

Ask by Phillips Boone. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution is \( x = -1 \) and \( y = 4 \).

Solución

To solve the system of equations: \[ \begin{cases} 4x + 2y = 4 \\ 3x - y = -7 \end{cases} \] **Step 1: Solve the second equation for \( y \).** \[ 3x - y = -7 \\ \Rightarrow y = 3x + 7 \] **Step 2: Substitute \( y = 3x + 7 \) into the first equation.** \[ 4x + 2(3x + 7) = 4 \\ 4x + 6x + 14 = 4 \\ 10x + 14 = 4 \\ 10x = 4 - 14 \\ 10x = -10 \\ x = -1 \] **Step 3: Substitute \( x = -1 \) back into \( y = 3x + 7 \) to find \( y \).** \[ y = 3(-1) + 7 \\ y = -3 + 7 \\ y = 4 \] **Solution:** \[ x = -1 \\ y = 4 \] **Therefore, the correct solution is:** \[ \begin{array}{l} x = -1 \\ y = 4 \end{array} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the system of equations given by \(4x + 2y = 4\) and \(3x - y = -7\), let’s first simplify the first equation: 1. Divide the entire equation \(4x + 2y = 4\) by 2: \[ 2x + y = 2 \] Now, we can express \(y\) in terms of \(x\): \[ y = 2 - 2x \] 2. Substitute \(y = 2 - 2x\) into the second equation \(3x - y = -7\): \[ 3x - (2 - 2x) = -7 \] Simplifying gives: \[ 3x - 2 + 2x = -7 \] Combine like terms: \[ 5x - 2 = -7 \] Adding 2 on both sides: \[ 5x = -5 \] Dividing by 5: \[ x = -1 \] 3. Now substitute \(x = -1\) back into the expression for \(y\): \[ y = 2 - 2(-1) = 2 + 2 = 4 \] So, the solution to the system of equations is \(x = -1\) and \(y = 4\). The correct answer among the options is \(x = -1\) and \(y = 4\). For a fun twist, math like solving systems of equations isn’t just about crunching numbers, it helps you develop critical thinking skills! Just think of it like solving a mystery where every equation is a clue leading you to the truth. Understanding how to apply systems of equations helps in real-world scenarios like optimizing resources in business or even balancing chemical equations in science! The ability to find the intersection of two lines can inform you where two different factors meet at a point - just like decision-making in everyday life!

Latest Algebra Questions

7. Efectueaza sis scrie rezultatul sub formă de putere: \( \begin{array}{lll}\text { a) } \frac{18}{5} \cdot\left(\frac{18}{5}\right)^{2}= & \text { b) }\left(\frac{6}{5}\right)^{2} \cdot\left(\frac{6}{5}\right)^{3} \cdot \frac{6}{5}= & \text { c) }\left(\frac{19}{5}\right)^{5} \cdot\left(\frac{19}{5}\right)^{16}= \\ \begin{array}{lll}\text { d) } \frac{3}{2} \cdot\left(\frac{3}{2}\right)^{3} \cdot\left(\frac{3}{2}\right)^{0} \cdot\left(\frac{3}{2}\right)^{4}= & \text { e) }\left[\left(\frac{28}{5}\right)^{2}\right]^{3}= & \text { f) }\left[\left(\frac{5}{6}\right)^{6}\right]^{7}= \\ \text { g) }\left[\left(\frac{24}{5}\right)^{2} \cdot\left(\frac{24}{5}\right)^{3}\right]^{8}= & \text { h) }\left[\frac{5}{7} \cdot\left(\frac{5}{7}\right)^{0} \cdot\left(\frac{5}{7}\right)^{4}\right]^{5}= & \text { i) }\left(\frac{29}{10}\right)^{10}:\left(\frac{29}{10}\right)^{7}=\end{array} \\ \left.\left.\begin{array}{lll}\text { j) }\left(\frac{1}{3}\right)^{17}: \frac{1}{3}= & \left.\text { k) }\left(\frac{3}{7}\right)^{11} \cdot\left(\frac{9}{49}\right)^{3}:\left(\frac{3}{7}\right)^{15}=1\right)\end{array}\right]\left(1 \frac{1}{2}\right)^{2}\right]^{8}:\left(\frac{3}{2}\right)^{13}= \\ \text { m) }\left(\frac{9}{10}\right)^{7} \cdot\left(\frac{1}{5}\right)^{7}= & \text { n) }\left(\frac{5}{2}\right)^{10} \cdot\left(\frac{8}{5}\right)^{10}: 2^{10}= & \text { o) } 9^{3} \cdot\left(\frac{7}{10}\right)^{3}:\left(\frac{63}{10}\right)^{3}= \\ \text { p) }\left[\left(\frac{1}{5}\right)^{7}\right]^{2} \cdot 6^{14}:\left(\frac{6}{5}\right)^{14}= & \text { q) }\left(\frac{5}{2}\right)^{7}:\left(\frac{5}{2}\right)^{5}= & \end{array} \)
Álgebra Romania Jan 30, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad