Pregunta
upstudy study bank question image url

If \( \mathrm{n}=29, \bar{x}(\mathrm{x} \)-bar \( )=34 \), and \( \mathrm{s}=8 \), construct a confidence interval at a \( 80 \% \) confidence level to estimate the true population mean \( \mu \). Give your answers to one decimal place.

Ask by Logan Parry. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The 80% confidence interval for the true population mean \( \mu \) is (32.1, 35.9).

Solución

To construct a confidence interval for the true population mean \( \mu \) at an \( 80\% \) confidence level, we can use the formula for the confidence interval: \[ \bar{x} \pm z \left( \frac{s}{\sqrt{n}} \right) \] Where: - \( \bar{x} \) is the sample mean, - \( z \) is the z-score corresponding to the desired confidence level, - \( s \) is the sample standard deviation, - \( n \) is the sample size. ### Step 1: Identify the known values - Sample size \( n = 29 \) - Sample mean \( \bar{x} = 34 \) - Sample standard deviation \( s = 8 \) ### Step 2: Find the z-score for \( 80\% \) confidence level For an \( 80\% \) confidence level, the z-score can be found using the standard normal distribution. The critical value \( z \) for \( 80\% \) confidence level (which leaves \( 10\% \) in each tail) is approximately \( 1.28 \). ### Step 3: Calculate the standard error (SE) The standard error (SE) is calculated as follows: \[ SE = \frac{s}{\sqrt{n}} = \frac{8}{\sqrt{29}} \] ### Step 4: Calculate the confidence interval Now we can calculate the confidence interval using the values we have: \[ \text{Margin of Error} = z \cdot SE \] Finally, we will compute the confidence interval: \[ \text{Confidence Interval} = \bar{x} \pm \text{Margin of Error} \] Let's perform the calculations step by step. 1. Calculate the standard error (SE). 2. Calculate the margin of error. 3. Construct the confidence interval. I'll perform these calculations now. Calculate the value by following steps: - step0: Calculate: \(\frac{8}{\sqrt{29}}\) - step1: Multiply by the Conjugate: \(\frac{8\sqrt{29}}{\sqrt{29}\times \sqrt{29}}\) - step2: Multiply the numbers: \(\frac{8\sqrt{29}}{29}\) Calculate or simplify the expression \( 1.28*(8/\sqrt(29)) \). Calculate the value by following steps: - step0: Calculate: \(1.28\left(\frac{8}{\sqrt{29}}\right)\) - step1: Remove the parentheses: \(1.28\times \frac{8}{\sqrt{29}}\) - step2: Convert the expressions: \(\frac{32}{25}\times \frac{8}{\sqrt{29}}\) - step3: Multiply the numbers: \(\frac{256}{25\sqrt{29}}\) - step4: Multiply by the Conjugate: \(\frac{256\sqrt{29}}{25\sqrt{29}\times \sqrt{29}}\) - step5: Multiply the numbers: \(\frac{256\sqrt{29}}{725}\) ### Step 3: Calculate the Standard Error (SE) The standard error (SE) is calculated as follows: \[ SE = \frac{s}{\sqrt{n}} \approx 1.5 \] ### Step 4: Calculate the Margin of Error Now, we calculate the margin of error using the z-score: \[ \text{Margin of Error} = z \cdot SE \approx 1.28 \cdot 1.5 \approx 1.9 \] ### Step 5: Construct the Confidence Interval Now we can construct the confidence interval: \[ \text{Confidence Interval} = \bar{x} \pm \text{Margin of Error} = 34 \pm 1.9 \] Calculating the lower and upper bounds: - Lower bound: \( 34 - 1.9 = 32.1 \) - Upper bound: \( 34 + 1.9 = 35.9 \) ### Final Answer The \( 80\% \) confidence interval to estimate the true population mean \( \mu \) is: \[ (32.1, 35.9) \] Thus, the confidence interval is \( (32.1, 35.9) \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To construct a confidence interval for the true population mean \( \mu \) using the provided data, we can apply the formula for a confidence interval when the population standard deviation is unknown and the sample size is small (n < 30). However, since n = 29, we'll use the t-distribution. 1. **Determine the t-score**: For an 80% confidence level and \( n - 1 = 28 \) degrees of freedom, we can find the t-score. Looking up in a t-table (or using statistical software), the t-score for an 80% confidence level is approximately 1.340. 2. **Calculate the standard error (SE)**: \[ SE = \frac{s}{\sqrt{n}} = \frac{8}{\sqrt{29}} \approx \frac{8}{5.385} \approx 1.484 \] 3. **Calculate the margin of error (ME)**: \[ ME = t \times SE \approx 1.340 \times 1.484 \approx 1.988 \] 4. **Compute the confidence interval**: \[ \text{Confidence Interval} = \bar{x} \pm ME = 34 \pm 1.988 \] This gives us: \[ \text{Lower Limit} = 34 - 1.988 \approx 32.0 \] \[ \text{Upper Limit} = 34 + 1.988 \approx 36.0 \] Thus, the 80% confidence interval to estimate the true population mean \( \mu \) is approximately \( (32.0, 36.0) \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad