Find the exact value of each of the following under the given conditions below. \( \tan \alpha=-\frac{5}{12}, \frac{\pi}{2}<\alpha<\pi ; \cos \beta=\frac{\sqrt{3}}{2}, 0<\beta<\frac{\pi}{2} \) \( \begin{array}{lll}\text { (a) } \boldsymbol{\operatorname { s i n }}(\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta)\end{array} \quad \) (d) \( \boldsymbol{\operatorname { t a n }}(\alpha-\beta) \) (a) \( \boldsymbol{\operatorname { s i n }}(\alpha+\beta)=\frac{5 \sqrt{3}-12}{26} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) (b) \( \cos (\alpha+\beta)=\frac{-12 \sqrt{3}-5}{26} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) (c) \( \sin (\alpha-\beta)=\frac{12+5 \sqrt{3}}{26} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) (d) \( \tan (\alpha-\beta)=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the exact value of \( \tan (\alpha - \beta) \), we will use the tangent subtraction formula: \[ \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} \] We already know \( \tan \alpha = -\frac{5}{12} \). Now, we need to find \( \tan \beta \). Since \( \cos \beta = \frac{\sqrt{3}}{2} \) and \( 0 < \beta < \frac{\pi}{2} \), we can find \( \sin \beta \) using the Pythagorean identity: \[ \sin^2 \beta + \cos^2 \beta = 1 \implies \sin^2 \beta + \left(\frac{\sqrt{3}}{2}\right)^2 = 1 \implies \sin^2 \beta + \frac{3}{4} = 1 \] \[ \sin^2 \beta = 1 - \frac{3}{4} = \frac{1}{4} \implies \sin \beta = \frac{1}{2} \] Now we can find \( \tan \beta \): \[ \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \] Now, substituting \( \tan \alpha \) and \( \tan \beta \) into the tangent subtraction formula: \[ \tan(\alpha - \beta) = \frac{-\frac{5}{12} - \frac{\sqrt{3}}{3}}{1 + \left(-\frac{5}{12}\right)\left(\frac{\sqrt{3}}{3}\right)} \] To simplify \( -\frac{5}{12} - \frac{\sqrt{3}}{3} \): \[ \frac{\sqrt{3}}{3} = \frac{4\sqrt{3}}{12} \implies -\frac{5}{12} - \frac{\sqrt{3}}{3} = -\frac{5}{12} - \frac{4\sqrt{3}}{12} = -\frac{5 + 4\sqrt{3}}{12} \] Now simplify the denominator \( 1 + \left(-\frac{5}{12}\right)\left(\frac{\sqrt{3}}{3}\right) \): \[ -\frac{5}{12} \cdot \frac{\sqrt{3}}{3} = -\frac{5\sqrt{3}}{36} \implies 1 - \frac{5\sqrt{3}}{36} = \frac{36}{36} - \frac{5\sqrt{3}}{36} = \frac{36 - 5\sqrt{3}}{36} \] Now substitute these back into the formula: \[ \tan(\alpha - \beta) = \frac{-\frac{5 + 4\sqrt{3}}{12}}{\frac{36 - 5\sqrt{3}}{36}} = \frac{- (5 + 4\sqrt{3}) \cdot 36}{12 \cdot (36 - 5\sqrt{3})} = \frac{-3(5 + 4\sqrt{3})}{36 - 5\sqrt{3}} \] Thus, \[ \tan(\alpha - \beta) = \frac{-15 - 12\sqrt{3}}{36 - 5\sqrt{3}} \] To summarize, the final answer is: \[ \boxed{\frac{-15 - 12\sqrt{3}}{36 - 5\sqrt{3}}} \]