Pregunta
upstudy study bank question image url

Matilda wishes to retire at age 67 with \( \$ 1,700,000 \) in her retirement account. When she turns 28 , she decides to begin depositing money into an account with an ApR of \( 9 \% \) compounded monthly. What is the monthly deposit that Matilda must make in order to reach her goal? Round your answer to the nearest cent. if necessary. Formulas

Ask by Hart Warner. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Matilda needs to deposit approximately \$400.69 each month to reach her retirement goal of \$1,700,000 by age 67.

Solución

To determine the **monthly deposit** Matilda needs to make to reach her retirement goal of **\$1,700,000** by age **67**, we can use the **Future Value of an Ordinary Annuity** formula. Here's a step-by-step breakdown: ### **Given:** - **Current Age:** 28 - **Retirement Age:** 67 - **Annual Percentage Rate (ApR):** 9% (compounded monthly) - **Future Value (FV):** \$1,700,000 ### **Calculate the Number of Periods and Monthly Interest Rate:** 1. **Number of Years to Invest:** \( 67 - 28 = 39 \) years 2. **Total Number of Monthly Deposits (n):** \( 39 \text{ years} \times 12 \text{ months/year} = 468 \text{ months} \) 3. **Monthly Interest Rate (r):** \( \frac{9\%}{12} = 0.75\% \) or \( 0.0075 \) in decimal ### **Future Value of an Ordinary Annuity Formula:** \[ FV = M \times \left( \frac{(1 + r)^n - 1}{r} \right) \] Where: - \( FV \) = Future Value (\$1,700,000) - \( M \) = Monthly Deposit - \( r \) = Monthly Interest Rate (0.0075) - \( n \) = Total Number of Deposits (468) ### **Solving for Monthly Deposit (M):** \[ M = \frac{FV}{\left( \frac{(1 + r)^n - 1}{r} \right)} \] Plugging in the numbers: \[ M = \frac{1,700,000}{\left( \frac{(1 + 0.0075)^{468} - 1}{0.0075} \right)} \] Calculating \( (1 + 0.0075)^{468} \): \[ (1.0075)^{468} \approx 32.817 \] Thus: \[ M = \frac{1,700,000}{\left( \frac{32.817 - 1}{0.0075} \right)} \] \[ M = \frac{1,700,000}{4,242.2667} \] \[ M \approx 400.69 \] ### **Conclusion:** Matilda needs to make a **monthly deposit of approximately \$400.69** to reach her retirement goal of \$1,700,000 by age 67, assuming a 9% annual interest rate compounded monthly. **Final Answer:** \[ \boxed{\$400.69} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To help Matilda reach her retirement goal, she can use the future value of a series formula for compound interest. The formula for the future value of an annuity (regular deposits) is: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] Where: - \( FV \) is the future value of the annuity, which is \( \$ 1,700,000 \). - \( P \) is the monthly deposit. - \( r \) is the monthly interest rate (annual rate divided by 12 months, so \( r = 0.09/12 = 0.0075 \)). - \( n \) is the total number of deposits (number of years until retirement times 12 months, so \( n = (67 - 28) \times 12 = 468 \)). Rearranging the formula to solve for \( P \): \[ P = \frac{FV \times r}{(1 + r)^n - 1} \] Plugging in the numbers, we find: 1. Calculate \( (1 + r)^n \): \[ (1 + 0.0075)^{468} \approx 11.484 \] 2. Now calculate \( P \): \[ P = \frac{1,700,000 \times 0.0075}{11.484 - 1} \approx 1,850.62 \] Thus, Matilda must make a monthly deposit of approximately \( \$ 1,850.62 \) to reach her retirement goal. Incorporating historical context, many people have turned to compound interest as a key strategy for retirement savings since the advent of savings accounts and investment funds in the late 19th century. This allows for the power of interest to work over time, growing early investments significantly. When it comes to real-world application, Matilda's approach is smart! Many financial advisors recommend starting to save for retirement as early as possible, as even small monthly contributions can escalate to impressive amounts by retirement age, thanks to compounding. In this scenario, it shows exactly how a little foresight and financial planning can lead to a secure future!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad