\begin{tabular}{l} implify the expression. Write your answer as an integer or simplified fraction. \\ \( 3^{-2}+6^{-1}=\square \) \\ \hline\( \square \) \\ \hline\end{tabular}
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To simplify the expression \(3^{-2} + 6^{-1}\), we first evaluate each term. Starting with \(3^{-2}\), this is equal to \(\frac{1}{3^2} = \frac{1}{9}\). Next, for \(6^{-1}\), this simplifies to \(\frac{1}{6}\). Now, to combine these two fractions, we need a common denominator. The least common multiple of \(9\) and \(6\) is \(18\). Rewriting \(\frac{1}{9}\) as \(\frac{2}{18}\) and \(\frac{1}{6}\) as \(\frac{3}{18}\), we can now add them: \[ \frac{2}{18} + \frac{3}{18} = \frac{5}{18}. \] So, the final answer is: \(\frac{5}{18}\).