Pregunta
upstudy study bank question image url

\( \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}+7} \) Choose the correct answer below. A. The y-intercept is (0,7). B. The horizontal asymptote is \( \mathrm{y}=1 \). C. The graph has an oblique asymptote. D. The \( x \)-axis is its horizontal asymptote F. The \( y \)-axis is its vertical asymptote. The vertical asymptote is \( \mathrm{x}=1 \). G. There is a hole in its graph at \( \mathrm{x}=-7 \). H. The x -intercept is \( (-6,0) \).

Ask by Park Mckenzie. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct answer is D: The x-axis is its horizontal asymptote.

Solución

Let's analyze each statement for the function \( f(x) = \frac{1}{x + 7} \): 1. **Y-Intercept (Option A)**: - To find the y-intercept, set \( x = 0 \): \[ f(0) = \frac{1}{0 + 7} = \frac{1}{7} \] - **Statement A** claims the y-intercept is \( (0, 7) \), which is **incorrect**. 2. **Horizontal Asymptote (Options B & D)**: - As \( x \) approaches infinity, \( f(x) \) approaches 0: \[ \lim_{x \to \pm\infty} \frac{1}{x + 7} = 0 \] - **Statement B** claims the horizontal asymptote is \( y = 1 \), which is **incorrect**. - **Statement D** correctly identifies the horizontal asymptote as the x-axis (\( y = 0 \)), which is **correct**. 3. **Oblique Asymptote (Option C)**: - Oblique (slant) asymptotes occur when the degree of the numerator is exactly one more than the degree of the denominator. Here, both degrees are: - Numerator: 0 (constant) - Denominator: 1 - Since the degree of the numerator is less, there is **no oblique asymptote**. - **Statement C** is **incorrect**. 4. **Vertical Asymptote and Holes (Options F & G)**: - **Vertical Asymptote**: Set the denominator to zero: \[ x + 7 = 0 \implies x = -7 \] - **Statement F** incorrectly states that the vertical asymptote is at \( x = 1 \) and that the y-axis is the vertical asymptote. Both parts are **incorrect**. - **Holes**: A hole occurs if there is a common factor in the numerator and denominator, which is not the case here. - **Statement G** is **incorrect**. 5. **X-Intercept (Option H)**: - To find the x-intercept, set \( f(x) = 0 \): \[ \frac{1}{x + 7} = 0 \] - This equation has **no solution**, meaning there is **no x-intercept**. - **Statement H** is **incorrect**. **Conclusion:** Only **Option D** is correct. **Answer:** D. The x -axis is its horizontal asymptote.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The graph of \( f(x) = \frac{1}{x + 7} \) has a vertical asymptote at \( x = -7 \) because the function is undefined at that point. As \( x \) approaches -7, the function goes to infinity or negative infinity. So let's dive into some fun additional knowledge! Did you know that horizontal asymptotes help us understand the behavior of functions as \( x \) gets extremely large or small? For this function, as \( x \) approaches infinity (or negative infinity), \( f(x) \) approaches 0, which means the horizontal asymptote is the line \( y = 0 \)! Also, a common mistake is to confuse the x-intercept with the y-intercept. The x-intercept can be found by setting the function equal to zero, which leads us to the conclusion that it occurs at \( (-6, 0) \) since \( f(-6) = 0 \)! Keep an eye on those intercepts and asymptotes!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad