Pregunta
Which of the following is the vertex of \( y=-f(-x) \) if the original function has a vertex of \( (-9,-8) \) ? (1 point \( (9,-8) \) \( (-9,8) \) \( (-9,-8) \) \( (9,8) \)
Ask by Kelley Schultz. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The vertex of \( y = -f(-x) \) is \( (9, 8) \).
Solución
To find the vertex of the transformed function \( y = -f(-x) \) given that the original function \( f(x) \) has a vertex at \( (-9, -8) \), we need to analyze the transformations step by step.
1. **Reflection across the y-axis**: The transformation \( f(-x) \) reflects the graph of \( f(x) \) across the y-axis. This changes the x-coordinate of the vertex:
- Original vertex: \( (-9, -8) \)
- After reflection: \( (9, -8) \)
2. **Reflection across the x-axis**: The transformation \( -f(-x) \) reflects the graph across the x-axis. This changes the y-coordinate of the vertex:
- After reflection across the y-axis: \( (9, -8) \)
- After reflection across the x-axis: \( (9, 8) \)
Thus, the vertex of \( y = -f(-x) \) is \( (9, 8) \).
The correct answer is \( (9, 8) \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To find the vertex of \( y = -f(-x) \), we can first look at how transformations work. The original vertex of \( f(x) \) is at \( (-9, -8) \). The transformation \( -f(-x) \) reflects the function over the y-axis (changing \( x \) to \( -x \)) and then reflects it over the x-axis (the negative sign before \( f \)). So, reflecting \( (-9, -8) \) over the y-axis gives \( (9, -8) \), and then reflecting that over the x-axis turns it into \( (9, 8) \). Therefore, the vertex of \( y = -f(-x) \) is \( (9, 8) \). Answer: \( (9,8) \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium