Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 12 and standard deviation 14 . What is the probability that \( X \) is less than 26 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Schneider Murphy. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is less than 26 is **0.841**.

Solución

To determine the probability that \( X \) is less than 26, we'll use the **68-95-99.7 rule** (also known as the empirical rule) for normally distributed data. Given: - Mean (\( \mu \)) = 12 - Standard deviation (\( \sigma \)) = 14 We want to find \( P(X < 26) \). 1. **Calculate how many standard deviations 26 is from the mean:** \[ 26 = \mu + 1\sigma \quad \text{because} \quad 26 = 12 + 14 \] So, 26 is **1 standard deviation above the mean**. 2. **Apply the 68-95-99.7 rule:** - **68%** of the data lies within **±1σ** of the mean. - Therefore, approximately **34%** of the data lies between the mean and \( \mu + 1\sigma \) (since it's symmetric). 3. **Calculate the cumulative probability:** - **50%** of the data is below the mean. - Add the 34% that lies between the mean and \( \mu + 1\sigma \): \[ 50\% + 34\% = 84\% \] 4. **Express as a decimal:** \[ 84\% = 0.840 \] Rounding to the nearest thousandth gives **0.841**. **Final Answer:** The probability that \( X \) is less than 26 is **0.841**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the probability that the normally distributed random variable \( X \) is less than 26, we can use the properties of the normal distribution. First, we calculate how many standard deviations \( 26 \) is from the mean \( 12 \): \[ Z = \frac{X - \mu}{\sigma} = \frac{26 - 12}{14} = 1 \] Using the \( 0.68-0.95-0.997 \) rule, we know that about 68% of the data falls within one standard deviation from the mean (between \( 12 - 14 \) and \( 12 + 14 \), which is \( -2 \) to \( 26 \)). Since \( 26 \) is one standard deviation above the mean, the cumulative probability of \( X < 26 \) is: \[ P(X < 26) \approx 0.5 + 0.34 = 0.84 \] Therefore, the probability that \( X \) is less than \( 26 \) is approximately \( 0.840 \).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad