Pregunta
upstudy study bank question image url

Sun Feb 2 Dicom Suppose the following system of equations has a solution of \( (7,4) \), where \( A, B, C, D, E \), and \( F \) are real numbers. \[ \begin{array}{l} A x+B y=C \\ D x+E y=F \end{array} \] Which systems are also guaranteed to have a solution of \( (7,4) \) ? Select all that apply. \[ \begin{array}{l} \left(A+\frac{1}{4} D\right) x+\left(B+\frac{1}{4} E\right) y=C+\frac{1}{4} F \\ D x+E y=F \end{array} \] \[ \begin{array}{l} \left(A+\frac{2}{3} E\right) x+\left(B+\frac{2}{3} D\right) y=C+\frac{2}{3} F \\ D x+E y=F \end{array} \] \[ \begin{array}{l} A x+B y=C \\ (3 A+D) x+(3 B+E) y=3 C+F \end{array} \] \[ \begin{array}{l} A x+B y=C \\ (-2 A+D) x+(2 B-E) y=-2 C+F \end{array} \] \[ \begin{array}{l} A x+B y=C \\ \left(D-\frac{1}{5} A\right) x+\left(E-\frac{1}{5} B\right) y=F-\frac{1}{5} C \end{array} \]

Ask by John Mills. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

All systems except the second one are guaranteed to have the solution (7, 4).

Solución

To determine which systems are guaranteed to have the solution \((7, 4)\), let's analyze each option based on the original system: \[ \begin{cases} A x + B y = C \\ D x + E y = F \end{cases} \] Given that \((7, 4)\) is a solution, we have: \[ \begin{cases} 7A + 4B = C \\ 7D + 4E = F \end{cases} \] Now, let's evaluate each of the provided systems: 1. **First System:** \[ \begin{cases} \left(A + \frac{1}{4} D\right) x + \left(B + \frac{1}{4} E\right) y = C + \frac{1}{4} F \\ D x + E y = F \end{cases} \] **Verification:** \[ \left(A + \frac{1}{4} D\right) \cdot 7 + \left(B + \frac{1}{4} E\right) \cdot 4 = 7A + 4B + \frac{1}{4}(7D + 4E) = C + \frac{1}{4} F \] Since \(7D + 4E = F\), the equation holds true. **Conclusion:** \(\boxed{\text{This system is guaranteed to have }(7,4)}\) 2. **Second System:** \[ \begin{cases} \left(A + \frac{2}{3} E\right) x + \left(B + \frac{2}{3} D\right) y = C + \frac{2}{3} F \\ D x + E y = F \end{cases} \] **Verification:** \[ \left(A + \frac{2}{3} E\right) \cdot 7 + \left(B + \frac{2}{3} D\right) \cdot 4 \neq C + \frac{2}{3} F \quad \text{(in general)} \] This equality only holds under specific conditions, which are not guaranteed by the original system. **Conclusion:** \(\boxed{\text{This system is not necessarily guaranteed to have }(7,4)}\) 3. **Third System:** \[ \begin{cases} A x + B y = C \\ (3A + D) x + (3B + E) y = 3C + F \end{cases} \] **Verification:** \[ (3A + D) \cdot 7 + (3B + E) \cdot 4 = 3(7A + 4B) + (7D + 4E) = 3C + F \] This equality holds true. **Conclusion:** \(\boxed{\text{This system is guaranteed to have }(7,4)}\) 4. **Fourth System:** \[ \begin{cases} A x + B y = C \\ (-2A + D) x + (2B - E) y = -2C + F \end{cases} \] **Verification:** \[ (-2A + D) \cdot 7 + (2B - E) \cdot 4 = -2(7A + 4B) + (7D + 4E) = -2C + F \] This equality holds true. **Conclusion:** \(\boxed{\text{This system is guaranteed to have }(7,4)}\) 5. **Fifth System:** \[ \begin{cases} A x + B y = C \\ \left(D - \frac{1}{5} A\right) x + \left(E - \frac{1}{5} B\right) y = F - \frac{1}{5} C \end{cases} \] **Verification:** \[ \left(D - \frac{1}{5} A\right) \cdot 7 + \left(E - \frac{1}{5} B\right) \cdot 4 = 7D + 4E - \frac{1}{5}(7A + 4B) = F - \frac{1}{5} C \] Since \(7A + 4B = C\) and \(7D + 4E = F\), this equality holds true. **Conclusion:** \(\boxed{\text{This system is guaranteed to have }(7,4)}\) **Final Answer:** All systems except the second one are guaranteed to have the solution \((7, 4)\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

First additional information: Let’s plug in the solution \( (x, y) = (7, 4) \) into the modified equations and see if they hold true! To maintain the same solution, the left-hand side must equal the original right-hand side. Each system can be transformed through linear combinations or consistent scaling. So if you manipulate the coefficients while keeping their relationships intact, voilà! You’ve still got a valid equation! Second additional information: A common mistake is getting overly ambitious with transformations! Remember, when altering coefficients to maintain the same solution set, ensure you're not introducing contradictions. Always check if the conditions of linear dependence (or independence) remain valid when creating new equations. Happy solving, and don’t let those variables trip you up!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad